Question
upstudy study bank question image url

33. Simplify: (a) \( -\frac{1}{9} \cdot\left(-\frac{7}{3}\right) \) (b) \( \frac{16}{13}+\left(-\frac{4}{65}\right) \) 34. How many times a wheel of radius \( ? \mathrm{~cm} \) must ratate to po 352 m ? 35. Simplify and then find the value if \( \mathrm{a}=-1 \) and \( \mathrm{b}=2 \) \[ 3 a b-2 b-5 a-2(5 a-7 a b)-30 \] 36. The number of illiterate persons in a country decreased from 150 lakhs to 100 lakhs in 10 years. What is the percentage of decrease? 38. Simplify: \[ \frac{\left(2^{4}\right)^{2} \times 9^{3} \times 4 \times 1^{9}}{2^{3} \times 8^{2} \times 27 \times 1^{5}} \] 39. What cross-section do you get when you give a (i) vertical cut (ii) herizontal cut to the following solids ? (a) A brick (b) A round apple (c) A die. 40. Kamal buys a book far Rx 275 and sells it at a loss of \( 15 \% \). How much does he sell if for ?

Ask by Mann Salinas. in India
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) \( \frac{7}{27} \) (b) \( \frac{76}{65} \) Number of rotations: \( \frac{17600}{\pi r} \) Value when \( a=-1 \) and \( b=2 \): \( -53 \) Percentage decrease: \( \frac{100}{3} \) or approximately \( 33.33\% \) Simplified expression: \( 54 \) Selling price: \( 233.75 \)

Solution

Calculate the value by following steps: - step0: Calculate: \(275-\left(0.15\times 275\right)\) - step1: Multiply the numbers: \(275-41.25\) - step2: Subtract the numbers: \(233.75\) Calculate or simplify the expression \( -\frac{1}{9} \cdot \left(-\frac{7}{3}\right) \). Calculate the value by following steps: - step0: Calculate: \(-\frac{1}{9}\left(-\frac{7}{3}\right)\) - step1: Use the rules for multiplication and division: \(\frac{1}{9}\times \frac{7}{3}\) - step2: Multiply the fractions: \(\frac{7}{9\times 3}\) - step3: Multiply: \(\frac{7}{27}\) Calculate or simplify the expression \( \frac{352}{2\pi} \). Calculate the value by following steps: - step0: Calculate: \(\frac{352}{2\pi }\) - step1: Reduce the fraction: \(\frac{176}{\pi }\) Calculate or simplify the expression \( \frac{16}{13}+\left(-\frac{4}{65}\right) \). Calculate the value by following steps: - step0: Calculate: \(\frac{16}{13}+\left(-\frac{4}{65}\right)\) - step1: Remove the parentheses: \(\frac{16}{13}-\frac{4}{65}\) - step2: Reduce fractions to a common denominator: \(\frac{16\times 5}{13\times 5}-\frac{4}{65}\) - step3: Multiply the numbers: \(\frac{16\times 5}{65}-\frac{4}{65}\) - step4: Transform the expression: \(\frac{16\times 5-4}{65}\) - step5: Multiply the numbers: \(\frac{80-4}{65}\) - step6: Subtract the numbers: \(\frac{76}{65}\) Calculate or simplify the expression \( \frac{150-100}{150} \times 100 \). Calculate the value by following steps: - step0: Calculate: \(\frac{150-100}{150}\times 100\) - step1: Subtract the numbers: \(\frac{50}{150}\times 100\) - step2: Reduce the fraction: \(\frac{1}{3}\times 100\) - step3: Multiply: \(\frac{100}{3}\) Calculate or simplify the expression \( 3(-1)(2)-2(2)-5(-1)-2(5(-1)-7(-1)(2))-30 \). Calculate the value by following steps: - step0: Calculate: \(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(5\left(-1\right)-7\left(-1\right)\times 2\right)-30\) - step1: Simplify: \(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5-7\left(-1\right)\times 2\right)-30\) - step2: Multiply: \(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5+14\right)-30\) - step3: Add the numbers: \(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\times 9-30\) - step4: Multiply: \(-6-2\times 2-5\left(-1\right)-2\times 9-30\) - step5: Multiply the numbers: \(-6-4-5\left(-1\right)-2\times 9-30\) - step6: Simplify: \(-6-4+5-2\times 9-30\) - step7: Multiply the numbers: \(-6-4+5-18-30\) - step8: Calculate: \(-53\) Calculate or simplify the expression \( \frac{\left(2^{4}\right)^{2} \times 9^{3} \times 4 \times 1^{9}}{2^{3} \times 8^{2} \times 27 \times 1^{5}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2^{4}\right)^{2}\times 9^{3}\times 4\times 1^{9}}{2^{3}\times 8^{2}\times 27\times 1^{5}}\) - step1: Multiply by \(a^{-n}:\) \(\frac{\left(2^{4}\right)^{2}\times 9^{3}\times 4}{2^{3}\times 8^{2}\times 27}\) - step2: Multiply the exponents: \(\frac{2^{4\times 2}\times 9^{3}\times 4}{2^{3}\times 8^{2}\times 27}\) - step3: Multiply by \(a^{-n}:\) \(\frac{2^{4\times 2}\times 9^{3}\times 4\times 2^{-3}}{8^{2}\times 27}\) - step4: Multiply the numbers: \(\frac{2^{8}\times 9^{3}\times 4\times 2^{-3}}{8^{2}\times 27}\) - step5: Multiply: \(\frac{2^{7}\times 9^{3}}{8^{2}\times 27}\) - step6: Factor the expression: \(\frac{2^{7}\times 9^{3}}{2^{6}\times 27}\) - step7: Reduce the fraction: \(\frac{2\times 9^{3}}{27}\) - step8: Factor the expression: \(\frac{2\times 3^{6}}{3^{3}}\) - step9: Reduce the fraction: \(2\times 3^{3}\) - step10: Evaluate the power: \(2\times 27\) - step11: Multiply: \(54\) Let's solve each part step by step. ### 33. Simplify: (a) \( -\frac{1}{9} \cdot\left(-\frac{7}{3}\right) \) To simplify this expression: 1. Multiply the fractions: \[ -\frac{1}{9} \cdot -\frac{7}{3} = \frac{1 \cdot 7}{9 \cdot 3} = \frac{7}{27} \] So, the simplified result is \( \frac{7}{27} \). (b) \( \frac{16}{13}+\left(-\frac{4}{65}\right) \) To simplify this expression: 1. Convert \( -\frac{4}{65} \) to a common denominator with \( \frac{16}{13} \): \[ \frac{16}{13} = \frac{16 \cdot 5}{13 \cdot 5} = \frac{80}{65} \] 2. Now add: \[ \frac{80}{65} - \frac{4}{65} = \frac{80 - 4}{65} = \frac{76}{65} \] So, the simplified result is \( \frac{76}{65} \). ### 34. How many times must a wheel of radius \( r \) cm rotate to cover 352 m? 1. First, convert 352 m to cm: \[ 352 \text{ m} = 352 \times 100 = 35200 \text{ cm} \] 2. The circumference \( C \) of the wheel is given by: \[ C = 2\pi r \] 3. The number of rotations \( N \) is: \[ N = \frac{35200}{2\pi r} \] So, the number of rotations is \( \frac{17600}{\pi r} \). ### 35. Simplify and find the value if \( a=-1 \) and \( b=2 \): \[ 3 a b - 2 b - 5 a - 2(5 a - 7 a b) - 30 \] 1. Substitute \( a \) and \( b \): \[ 3(-1)(2) - 2(2) - 5(-1) - 2(5(-1) - 7(-1)(2)) - 30 \] 2. Calculate each term: \[ = -6 - 4 + 5 - 2(-5 + 14) - 30 \] \[ = -6 - 4 + 5 - 2(9) - 30 \] \[ = -6 - 4 + 5 - 18 - 30 \] \[ = -53 \] So, the final value is \( -53 \). ### 36. Percentage of decrease in illiterate persons: 1. Initial number: 150 lakhs, Final number: 100 lakhs. 2. Percentage decrease: \[ \text{Percentage Decrease} = \frac{150 - 100}{150} \times 100 = \frac{50}{150} \times 100 = \frac{100}{3} \approx 33.33\% \] So, the percentage of decrease is \( \frac{100}{3} \) or approximately \( 33.33\% \). ### 38. Simplify: \[ \frac{\left(2^{4}\right)^{2} \times 9^{3} \times 4 \times 1^{9}}{2^{3} \times 8^{2} \times 27 \times 1^{5}} \] 1. Simplify the numerator: \[ (2^4)^2 = 2^8, \quad 9^3 = (3^2)^3 = 3^6, \quad 4 = 2^2, \quad 1^9 = 1 \] So, the numerator becomes: \[ 2^8 \times 3^6 \times 2^2 = 2^{10} \times 3^6 \] 2. Simplify the denominator: \[ 2^3 \times 8^2 = 2^3 \times (2^3)^2 = 2^3 \times 2^6 = 2^9, \quad 27 = 3^3, \quad 1^5 = 1 \] So, the denominator becomes: \[ 2^9 \times 3^3 \] 3. Now, simplify the entire fraction: \[ \frac{2^{10} \times 3^6}{2^9 \times 3^3} = 2^{10-9} \times 3^{6-3} = 2^1 \times 3^3 = 2 \times 27 = 54 \] So, the simplified result is \( 54 \). ### 40. Kamal's selling price after a loss of \( 15\% \): 1. Calculate the loss: \[ \text{Loss} = 0.15 \times 275 = 41.25 \] 2. Selling price: \[ \text{Selling Price} = 275 - 41.25 = 233.75 \] So, Kamal sells the book for \( 233.75 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

When simplifying expressions, it’s often helpful to break them down step by step. For example, with negative fractions, multiplying two negatives results in a positive, so you can easily simplify \( -\frac{1}{9} \cdot\left(-\frac{7}{3}\right) \) into \( \frac{7}{27} \). Just remember that maintaining the correct signs is key! In the case of calculating percentage decrease, the formula is \(\frac{\text{Old Value} - \text{New Value}}{\text{Old Value}} \times 100\). For the given numbers of illiterate persons, you can plug in the values: \(\frac{150 - 100}{150} \times 100\), giving a 33.33% decrease. It’s a handy formula that can be applied to many real-life situations like tracking expenses or performance!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy