Answer
(a) \( \frac{7}{27} \)
(b) \( \frac{76}{65} \)
Number of rotations: \( \frac{17600}{\pi r} \)
Value when \( a=-1 \) and \( b=2 \): \( -53 \)
Percentage decrease: \( \frac{100}{3} \) or approximately \( 33.33\% \)
Simplified expression: \( 54 \)
Selling price: \( 233.75 \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(275-\left(0.15\times 275\right)\)
- step1: Multiply the numbers:
\(275-41.25\)
- step2: Subtract the numbers:
\(233.75\)
Calculate or simplify the expression \( -\frac{1}{9} \cdot \left(-\frac{7}{3}\right) \).
Calculate the value by following steps:
- step0: Calculate:
\(-\frac{1}{9}\left(-\frac{7}{3}\right)\)
- step1: Use the rules for multiplication and division:
\(\frac{1}{9}\times \frac{7}{3}\)
- step2: Multiply the fractions:
\(\frac{7}{9\times 3}\)
- step3: Multiply:
\(\frac{7}{27}\)
Calculate or simplify the expression \( \frac{352}{2\pi} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{352}{2\pi }\)
- step1: Reduce the fraction:
\(\frac{176}{\pi }\)
Calculate or simplify the expression \( \frac{16}{13}+\left(-\frac{4}{65}\right) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{16}{13}+\left(-\frac{4}{65}\right)\)
- step1: Remove the parentheses:
\(\frac{16}{13}-\frac{4}{65}\)
- step2: Reduce fractions to a common denominator:
\(\frac{16\times 5}{13\times 5}-\frac{4}{65}\)
- step3: Multiply the numbers:
\(\frac{16\times 5}{65}-\frac{4}{65}\)
- step4: Transform the expression:
\(\frac{16\times 5-4}{65}\)
- step5: Multiply the numbers:
\(\frac{80-4}{65}\)
- step6: Subtract the numbers:
\(\frac{76}{65}\)
Calculate or simplify the expression \( \frac{150-100}{150} \times 100 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{150-100}{150}\times 100\)
- step1: Subtract the numbers:
\(\frac{50}{150}\times 100\)
- step2: Reduce the fraction:
\(\frac{1}{3}\times 100\)
- step3: Multiply:
\(\frac{100}{3}\)
Calculate or simplify the expression \( 3(-1)(2)-2(2)-5(-1)-2(5(-1)-7(-1)(2))-30 \).
Calculate the value by following steps:
- step0: Calculate:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(5\left(-1\right)-7\left(-1\right)\times 2\right)-30\)
- step1: Simplify:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5-7\left(-1\right)\times 2\right)-30\)
- step2: Multiply:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\left(-5+14\right)-30\)
- step3: Add the numbers:
\(3\left(-1\right)\times 2-2\times 2-5\left(-1\right)-2\times 9-30\)
- step4: Multiply:
\(-6-2\times 2-5\left(-1\right)-2\times 9-30\)
- step5: Multiply the numbers:
\(-6-4-5\left(-1\right)-2\times 9-30\)
- step6: Simplify:
\(-6-4+5-2\times 9-30\)
- step7: Multiply the numbers:
\(-6-4+5-18-30\)
- step8: Calculate:
\(-53\)
Calculate or simplify the expression \( \frac{\left(2^{4}\right)^{2} \times 9^{3} \times 4 \times 1^{9}}{2^{3} \times 8^{2} \times 27 \times 1^{5}} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2^{4}\right)^{2}\times 9^{3}\times 4\times 1^{9}}{2^{3}\times 8^{2}\times 27\times 1^{5}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{\left(2^{4}\right)^{2}\times 9^{3}\times 4}{2^{3}\times 8^{2}\times 27}\)
- step2: Multiply the exponents:
\(\frac{2^{4\times 2}\times 9^{3}\times 4}{2^{3}\times 8^{2}\times 27}\)
- step3: Multiply by \(a^{-n}:\)
\(\frac{2^{4\times 2}\times 9^{3}\times 4\times 2^{-3}}{8^{2}\times 27}\)
- step4: Multiply the numbers:
\(\frac{2^{8}\times 9^{3}\times 4\times 2^{-3}}{8^{2}\times 27}\)
- step5: Multiply:
\(\frac{2^{7}\times 9^{3}}{8^{2}\times 27}\)
- step6: Factor the expression:
\(\frac{2^{7}\times 9^{3}}{2^{6}\times 27}\)
- step7: Reduce the fraction:
\(\frac{2\times 9^{3}}{27}\)
- step8: Factor the expression:
\(\frac{2\times 3^{6}}{3^{3}}\)
- step9: Reduce the fraction:
\(2\times 3^{3}\)
- step10: Evaluate the power:
\(2\times 27\)
- step11: Multiply:
\(54\)
Let's solve each part step by step.
### 33. Simplify:
(a) \( -\frac{1}{9} \cdot\left(-\frac{7}{3}\right) \)
To simplify this expression:
1. Multiply the fractions:
\[
-\frac{1}{9} \cdot -\frac{7}{3} = \frac{1 \cdot 7}{9 \cdot 3} = \frac{7}{27}
\]
So, the simplified result is \( \frac{7}{27} \).
(b) \( \frac{16}{13}+\left(-\frac{4}{65}\right) \)
To simplify this expression:
1. Convert \( -\frac{4}{65} \) to a common denominator with \( \frac{16}{13} \):
\[
\frac{16}{13} = \frac{16 \cdot 5}{13 \cdot 5} = \frac{80}{65}
\]
2. Now add:
\[
\frac{80}{65} - \frac{4}{65} = \frac{80 - 4}{65} = \frac{76}{65}
\]
So, the simplified result is \( \frac{76}{65} \).
### 34. How many times must a wheel of radius \( r \) cm rotate to cover 352 m?
1. First, convert 352 m to cm:
\[
352 \text{ m} = 352 \times 100 = 35200 \text{ cm}
\]
2. The circumference \( C \) of the wheel is given by:
\[
C = 2\pi r
\]
3. The number of rotations \( N \) is:
\[
N = \frac{35200}{2\pi r}
\]
So, the number of rotations is \( \frac{17600}{\pi r} \).
### 35. Simplify and find the value if \( a=-1 \) and \( b=2 \):
\[
3 a b - 2 b - 5 a - 2(5 a - 7 a b) - 30
\]
1. Substitute \( a \) and \( b \):
\[
3(-1)(2) - 2(2) - 5(-1) - 2(5(-1) - 7(-1)(2)) - 30
\]
2. Calculate each term:
\[
= -6 - 4 + 5 - 2(-5 + 14) - 30
\]
\[
= -6 - 4 + 5 - 2(9) - 30
\]
\[
= -6 - 4 + 5 - 18 - 30
\]
\[
= -53
\]
So, the final value is \( -53 \).
### 36. Percentage of decrease in illiterate persons:
1. Initial number: 150 lakhs, Final number: 100 lakhs.
2. Percentage decrease:
\[
\text{Percentage Decrease} = \frac{150 - 100}{150} \times 100 = \frac{50}{150} \times 100 = \frac{100}{3} \approx 33.33\%
\]
So, the percentage of decrease is \( \frac{100}{3} \) or approximately \( 33.33\% \).
### 38. Simplify:
\[
\frac{\left(2^{4}\right)^{2} \times 9^{3} \times 4 \times 1^{9}}{2^{3} \times 8^{2} \times 27 \times 1^{5}}
\]
1. Simplify the numerator:
\[
(2^4)^2 = 2^8, \quad 9^3 = (3^2)^3 = 3^6, \quad 4 = 2^2, \quad 1^9 = 1
\]
So, the numerator becomes:
\[
2^8 \times 3^6 \times 2^2 = 2^{10} \times 3^6
\]
2. Simplify the denominator:
\[
2^3 \times 8^2 = 2^3 \times (2^3)^2 = 2^3 \times 2^6 = 2^9, \quad 27 = 3^3, \quad 1^5 = 1
\]
So, the denominator becomes:
\[
2^9 \times 3^3
\]
3. Now, simplify the entire fraction:
\[
\frac{2^{10} \times 3^6}{2^9 \times 3^3} = 2^{10-9} \times 3^{6-3} = 2^1 \times 3^3 = 2 \times 27 = 54
\]
So, the simplified result is \( 54 \).
### 40. Kamal's selling price after a loss of \( 15\% \):
1. Calculate the loss:
\[
\text{Loss} = 0.15 \times 275 = 41.25
\]
2. Selling price:
\[
\text{Selling Price} = 275 - 41.25 = 233.75
\]
So, Kamal sells the book for \( 233.75 \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution