Question
upstudy study bank question image url

VESTIGATING COMPOUND ANGLES AND THEREFORE, DOUBLE, ANGLES, UESTION 1 1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.2 \( \operatorname{compare} \) the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) 1.3 Using your \( \operatorname{comparison} \) in Question 1.2 ., what general \( \operatorname{conclusion} \operatorname{can} \) be made regarding \( \cos (A-B), \cos A-\cos B \) and \( \cos A \cdot \cos B+\sin A \cdot \sin B \) for any values of \( A \) and \( B \) ?

Ask by Carroll Reese. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

For any angles \( A \) and \( B \), \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \).

Solution

Let's tackle the problem step by step to understand the relationships between the given trigonometric expressions. --- ### **Question 1.1: Evaluation of Expressions** Given three sets of angles: 1. **Case (i):** \( A = 60^\circ \), \( B = 30^\circ \) 2. **Case (ii):** \( A = 110^\circ \), \( B = 50^\circ \) 3. **Case (iii):** \( A = 225^\circ \), \( B = 135^\circ \) We need to evaluate the following for each case: - **(a)** \( \cos(A - B) \) - **(b)** \( \cos A - \cos B \) - **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) Let's compute these step by step. --- #### **Case (i): \( A = 60^\circ \), \( B = 30^\circ \)** 1. **(a) \( \cos(A - B) = \cos(60^\circ - 30^\circ) = \cos(30^\circ) \approx 0.8660 \)** 2. **(b) \( \cos A - \cos B = \cos(60^\circ) - \cos(30^\circ) = 0.5 - 0.8660 = -0.3660 \)** 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B = (0.5 \times 0.8660) + (\sin 60^\circ \times \sin 30^\circ) \approx (0.4330) + (0.8660 \times 0.5) = 0.4330 + 0.4330 = 0.8660 \)** --- #### **Case (ii): \( A = 110^\circ \), \( B = 50^\circ \)** 1. **(a) \( \cos(A - B) = \cos(110^\circ - 50^\circ) = \cos(60^\circ) = 0.5 \)** 2. **(b) \( \cos A - \cos B = \cos(110^\circ) - \cos(50^\circ) \approx (-0.3420) - 0.6428 = -0.9848 \)** 3. **(c)** \[ \begin{align*} \cos A \cdot \cos B + \sin A \cdot \sin B &= \cos(110^\circ) \cdot \cos(50^\circ) + \sin(110^\circ) \cdot \sin(50^\circ) \\ &\approx (-0.3420) \times 0.6428 + 0.9397 \times 0.7660 \\ &\approx -0.2196 + 0.7194 \\ &= 0.4998 \approx 0.5 \end{align*} \] --- #### **Case (iii): \( A = 225^\circ \), \( B = 135^\circ \)** 1. **(a) \( \cos(A - B) = \cos(225^\circ - 135^\circ) = \cos(90^\circ) = 0 \)** 2. **(b) \( \cos A - \cos B = \cos(225^\circ) - \cos(135^\circ) \approx (-0.7071) - (-0.7071) = 0 \)** 3. **(c)** \[ \begin{align*} \cos A \cdot \cos B + \sin A \cdot \sin B &= \cos(225^\circ) \cdot \cos(135^\circ) + \sin(225^\circ) \cdot \sin(135^\circ) \\ &\approx (-0.7071) \times (-0.7071) + (-0.7071) \times 0.7071 \\ &\approx 0.5 - 0.5 \\ &= 0 \end{align*} \] --- ### **Question 1.2: Comparison of Values** Let's summarize the computed values: | **Case** | **\( \cos(A - B) \)** | **\( \cos A - \cos B \)** | **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** | |----------|-----------------------|----------------------------|-------------------------------------------------------| | **(i)** | 0.8660 | -0.3660 | 0.8660 | | **(ii)** | 0.5 | -0.9848 | 0.5 | | **(iii)**| 0 | 0 | 0 | **Observations:** 1. **\( \cos(A - B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are equal in all cases.** 2. **\( \cos A - \cos B \) differs from the other two expressions, except in Case (iii), where all expressions are zero.** --- ### **Question 1.3: General Conclusion** From the calculations and comparisons above, we can draw a general conclusion based on trigonometric identities. **Identity:** \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] **Conclusion:** - **For any angles \( A \) and \( B \), the expression \( \cos(A - B) \) is always equal to \( \cos A \cdot \cos B + \sin A \cdot \sin B \).** - **The expression \( \cos A - \cos B \) does not generally equal \( \cos(A - B) \) or \( \cos A \cdot \cos B + \sin A \cdot \sin B \), except in specific cases (e.g., when \( A - B = 0^\circ \) or \( 180^\circ \), leading to both expressions equating to zero).** This demonstrates the fundamental trigonometric identity and highlights the distinct nature of each expression involving trigonometric functions.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To tackle the equations, remember that \( \cos(A-B) \) uses the cosine difference formula: \( \cos(A-B) = \cos A \cdot \cos B + \sin A \cdot \sin B \). This shows a remarkable connection between the three expressions you are evaluating. When you calculate these values with the given angles, you'll notice that \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) yield the same results, proving the identity. Now, let's look at the differences. The expression \( \cos A - \cos B \) represents the algebraic difference between the cosines of the angles and does not hold the same relationship with \( \cos(A-B) \) due to the way angle subtraction interacts with cosine. In the comparisons you perform, it becomes clear that while \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) always match, \( \cos A - \cos B \) presents a different story and offers insight into how angles behave on a circular scale. Ultimately, through your evaluations and comparisons, you'll conclude that \( \cos(A-B) \) and \( \cos A \cdot \cos B + \sin A \cdot \sin B \) are indeed equal while \( \cos A - \cos B \) differs, reinforcing the beauty and symmetry of trigonometric identities.

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy