Question
upstudy study bank question image url

Solve it! TT \( \sqrt{ \pm} \) Here is the system we created on the last slide.... Solve it! \[ \begin{array}{l} 30 x+4 y=1,040 \\ 12 x+16 y=2,000 \end{array} \] Write your answer as an ordered pair ( \( x, y \) ) Explain the meaning of your solution using a sentence or two. \( \sqrt{ \pm} \) Submit

Ask by Kelley Deleon. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution is \( (20, 110) \). This means when \( x = 20 \) and \( y = 110 \), both equations are true.

Solution

Solve the system of equations \( 30x+4y=1040;12x+16y=2000 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}30x+4y=1040\\12x+16y=2000\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{520-2y}{15}\\12x+16y=2000\end{array}\right.\) - step2: Substitute the value of \(x:\) \(12\times \frac{520-2y}{15}+16y=2000\) - step3: Multiply the terms: \(\frac{4\left(520-2y\right)}{5}+16y=2000\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{4\left(520-2y\right)}{5}+16y\right)\times 5=2000\times 5\) - step5: Simplify the equation: \(2080+72y=10000\) - step6: Move the constant to the right side: \(72y=10000-2080\) - step7: Subtract the numbers: \(72y=7920\) - step8: Divide both sides: \(\frac{72y}{72}=\frac{7920}{72}\) - step9: Divide the numbers: \(y=110\) - step10: Substitute the value of \(y:\) \(x=\frac{520-2\times 110}{15}\) - step11: Calculate: \(x=20\) - step12: Calculate: \(\left\{ \begin{array}{l}x=20\\y=110\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=20\\y=110\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(20,110\right)\) The solution to the system of equations is \( (x, y) = (20, 110) \). This means that when \( x = 20 \) and \( y = 110 \), both equations are satisfied. In other words, the point (20, 110) is a solution to the system of equations.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the system of equations, we can use either the substitution or elimination method. Let's use elimination: 1. **First Equation**: \(30x + 4y = 1,040\) 2. **Second Equation**: \(12x + 16y = 2,000\) To eliminate \(y\), we can multiply the first equation by 4 to align the coefficients of \(y\): \[ 4(30x + 4y) = 4(1,040) \\ 120x + 16y = 4,160 \] Now we have: 1. \(120x + 16y = 4,160\) 2. \(12x + 16y = 2,000\) Now, we subtract the second equation from the first: \[ (120x + 16y) - (12x + 16y) = 4,160 - 2,000 \\ 108x = 2,160 \\ x = \frac{2,160}{108} = 20 \] Now, substitute \(x = 20\) back into one of the original equations, let's use the first one: \[ 30(20) + 4y = 1,040 \\ 600 + 4y = 1,040 \\ 4y = 1,040 - 600 \\ 4y = 440 \\ y = \frac{440}{4} = 110 \] Thus, the solution is the ordered pair \((20, 110)\). Interpreting the solution, this means that at \(x = 20\) and \(y = 110\), both equations balance perfectly, which could represent a scenario such as the allocation of resources or units produced in a real-world application, like a factory's output in a given timeframe.

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy