Pregunta
upstudy study bank question image url

Solve it! TT \( \sqrt{ \pm} \) Here is the system we created on the last slide.... Solve it! \[ \begin{array}{l} 30 x+4 y=1,040 \\ 12 x+16 y=2,000 \end{array} \] Write your answer as an ordered pair ( \( x, y \) ) Explain the meaning of your solution using a sentence or two. \( \sqrt{ \pm} \) Submit

Ask by Kelley Deleon. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( (20, 110) \). This means when \( x = 20 \) and \( y = 110 \), both equations are true.

Solución

Solve the system of equations \( 30x+4y=1040;12x+16y=2000 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}30x+4y=1040\\12x+16y=2000\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{520-2y}{15}\\12x+16y=2000\end{array}\right.\) - step2: Substitute the value of \(x:\) \(12\times \frac{520-2y}{15}+16y=2000\) - step3: Multiply the terms: \(\frac{4\left(520-2y\right)}{5}+16y=2000\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{4\left(520-2y\right)}{5}+16y\right)\times 5=2000\times 5\) - step5: Simplify the equation: \(2080+72y=10000\) - step6: Move the constant to the right side: \(72y=10000-2080\) - step7: Subtract the numbers: \(72y=7920\) - step8: Divide both sides: \(\frac{72y}{72}=\frac{7920}{72}\) - step9: Divide the numbers: \(y=110\) - step10: Substitute the value of \(y:\) \(x=\frac{520-2\times 110}{15}\) - step11: Calculate: \(x=20\) - step12: Calculate: \(\left\{ \begin{array}{l}x=20\\y=110\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=20\\y=110\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(20,110\right)\) The solution to the system of equations is \( (x, y) = (20, 110) \). This means that when \( x = 20 \) and \( y = 110 \), both equations are satisfied. In other words, the point (20, 110) is a solution to the system of equations.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations, we can use either the substitution or elimination method. Let's use elimination: 1. **First Equation**: \(30x + 4y = 1,040\) 2. **Second Equation**: \(12x + 16y = 2,000\) To eliminate \(y\), we can multiply the first equation by 4 to align the coefficients of \(y\): \[ 4(30x + 4y) = 4(1,040) \\ 120x + 16y = 4,160 \] Now we have: 1. \(120x + 16y = 4,160\) 2. \(12x + 16y = 2,000\) Now, we subtract the second equation from the first: \[ (120x + 16y) - (12x + 16y) = 4,160 - 2,000 \\ 108x = 2,160 \\ x = \frac{2,160}{108} = 20 \] Now, substitute \(x = 20\) back into one of the original equations, let's use the first one: \[ 30(20) + 4y = 1,040 \\ 600 + 4y = 1,040 \\ 4y = 1,040 - 600 \\ 4y = 440 \\ y = \frac{440}{4} = 110 \] Thus, the solution is the ordered pair \((20, 110)\). Interpreting the solution, this means that at \(x = 20\) and \(y = 110\), both equations balance perfectly, which could represent a scenario such as the allocation of resources or units produced in a real-world application, like a factory's output in a given timeframe.

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad