Question
upstudy study bank question image url

From the first prinaiple, difterentiate with respect to \( x \) (i) \( \frac{-x}{2}+u \) (i) \( \frac{1}{2 \sqrt{x}} \)

Ask by Schmidt Joseph. in Ghana
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The derivatives are: 1. \( f'(x) = -\frac{1}{2} \) for \( f(x) = \frac{-x}{2} + u \) 2. \( f'(x) = -\frac{1}{4 x^{3/2}} \) for \( f(x) = \frac{1}{2 \sqrt{x}} \)

Solution

Certainly! Let's differentiate each of the given functions with respect to \( x \) using the **first principles** (also known as the limit definition of the derivative). ### **First Principles of Differentiation** The derivative of a function \( f(x) \) at a point \( x \) is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] We'll apply this definition to both functions provided. --- ### **(i) Differentiating \( f(x) = \frac{-x}{2} + u \)** **Assumption:** Here, \( u \) is considered a constant with respect to \( x \). 1. **Apply the definition:** \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] 2. **Compute \( f(x+h) \):** \[ f(x+h) = \frac{-(x+h)}{2} + u \] 3. **Subtract \( f(x) \) from \( f(x+h) \):** \[ f(x+h) - f(x) = \left( \frac{-(x+h)}{2} + u \right) - \left( \frac{-x}{2} + u \right) = \frac{-h}{2} \] 4. **Form the difference quotient:** \[ \frac{f(x+h) - f(x)}{h} = \frac{-h/2}{h} = -\frac{1}{2} \] 5. **Take the limit as \( h \to 0 \):** \[ f'(x) = \lim_{h \to 0} \left( -\frac{1}{2} \right) = -\frac{1}{2} \] **Final Result:** \[ f'(x) = -\frac{1}{2} \] --- ### **(ii) Differentiating \( f(x) = \frac{1}{2 \sqrt{x}} \)** 1. **Rewrite the function for clarity:** \[ f(x) = \frac{1}{2} x^{-1/2} \] 2. **Apply the definition:** \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2 \sqrt{x+h}} - \frac{1}{2 \sqrt{x}}}{h} \] 3. **Simplify the numerator:** \[ \frac{1}{2 \sqrt{x+h}} - \frac{1}{2 \sqrt{x}} = \frac{\sqrt{x} - \sqrt{x+h}}{2 \sqrt{x} \sqrt{x+h}} \] 4. **Form the difference quotient:** \[ \frac{\sqrt{x} - \sqrt{x+h}}{2 h \sqrt{x} \sqrt{x+h}} \] 5. **Rationalize the numerator:** Multiply numerator and denominator by \( \sqrt{x} + \sqrt{x+h} \): \[ \frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} = \frac{x - (x + h)}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} = \frac{-h}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} \] 6. **Simplify by canceling \( h \):** \[ \frac{-1}{2 \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} \] 7. **Take the limit as \( h \to 0 \):** As \( h \to 0 \), \( \sqrt{x+h} \to \sqrt{x} \): \[ f'(x) = \frac{-1}{2 \cdot \sqrt{x} \cdot \sqrt{x} \cdot (2 \sqrt{x})} = \frac{-1}{4 x \sqrt{x}} = \frac{-1}{4 x^{3/2}} \] **Final Result:** \[ f'(x) = -\frac{1}{4 x^{3/2}} \] --- ### **Summary of Results** 1. **For \( f(x) = \frac{-x}{2} + u \):** \[ f'(x) = -\frac{1}{2} \] 2. **For \( f(x) = \frac{1}{2 \sqrt{x}} \):** \[ f'(x) = -\frac{1}{4 x^{3/2}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To differentiate the function \( \frac{-x}{2}+u \) with respect to \( x \), we treat \( u \) as a constant. The derivative is \( \frac{d}{dx} \left( \frac{-x}{2} + u \right) = -\frac{1}{2} \). For \( \frac{1}{2 \sqrt{x}} \), we can rewrite it as \( \frac{1}{2} x^{-1/2} \). Applying the power rule gives us \( \frac{d}{dx} \left( \frac{1}{2 \sqrt{x}} \right) = \frac{1}{2} \cdot \left(-\frac{1}{2}\right) x^{-3/2} = -\frac{1}{4 \sqrt{x^3}} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy