Question
From the first prinaiple, difterentiate with respect to \( x \) (i) \( \frac{-x}{2}+u \) (i) \( \frac{1}{2 \sqrt{x}} \)
Ask by Schmidt Joseph. in Ghana
Jan 30,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The derivatives are:
1. \( f'(x) = -\frac{1}{2} \) for \( f(x) = \frac{-x}{2} + u \)
2. \( f'(x) = -\frac{1}{4 x^{3/2}} \) for \( f(x) = \frac{1}{2 \sqrt{x}} \)
Solution
Certainly! Let's differentiate each of the given functions with respect to \( x \) using the **first principles** (also known as the limit definition of the derivative).
### **First Principles of Differentiation**
The derivative of a function \( f(x) \) at a point \( x \) is defined as:
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
We'll apply this definition to both functions provided.
---
### **(i) Differentiating \( f(x) = \frac{-x}{2} + u \)**
**Assumption:** Here, \( u \) is considered a constant with respect to \( x \).
1. **Apply the definition:**
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
2. **Compute \( f(x+h) \):**
\[
f(x+h) = \frac{-(x+h)}{2} + u
\]
3. **Subtract \( f(x) \) from \( f(x+h) \):**
\[
f(x+h) - f(x) = \left( \frac{-(x+h)}{2} + u \right) - \left( \frac{-x}{2} + u \right) = \frac{-h}{2}
\]
4. **Form the difference quotient:**
\[
\frac{f(x+h) - f(x)}{h} = \frac{-h/2}{h} = -\frac{1}{2}
\]
5. **Take the limit as \( h \to 0 \):**
\[
f'(x) = \lim_{h \to 0} \left( -\frac{1}{2} \right) = -\frac{1}{2}
\]
**Final Result:**
\[
f'(x) = -\frac{1}{2}
\]
---
### **(ii) Differentiating \( f(x) = \frac{1}{2 \sqrt{x}} \)**
1. **Rewrite the function for clarity:**
\[
f(x) = \frac{1}{2} x^{-1/2}
\]
2. **Apply the definition:**
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{2 \sqrt{x+h}} - \frac{1}{2 \sqrt{x}}}{h}
\]
3. **Simplify the numerator:**
\[
\frac{1}{2 \sqrt{x+h}} - \frac{1}{2 \sqrt{x}} = \frac{\sqrt{x} - \sqrt{x+h}}{2 \sqrt{x} \sqrt{x+h}}
\]
4. **Form the difference quotient:**
\[
\frac{\sqrt{x} - \sqrt{x+h}}{2 h \sqrt{x} \sqrt{x+h}}
\]
5. **Rationalize the numerator:**
Multiply numerator and denominator by \( \sqrt{x} + \sqrt{x+h} \):
\[
\frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} = \frac{x - (x + h)}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})} = \frac{-h}{2 h \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})}
\]
6. **Simplify by canceling \( h \):**
\[
\frac{-1}{2 \sqrt{x} \sqrt{x+h} (\sqrt{x} + \sqrt{x+h})}
\]
7. **Take the limit as \( h \to 0 \):**
As \( h \to 0 \), \( \sqrt{x+h} \to \sqrt{x} \):
\[
f'(x) = \frac{-1}{2 \cdot \sqrt{x} \cdot \sqrt{x} \cdot (2 \sqrt{x})} = \frac{-1}{4 x \sqrt{x}} = \frac{-1}{4 x^{3/2}}
\]
**Final Result:**
\[
f'(x) = -\frac{1}{4 x^{3/2}}
\]
---
### **Summary of Results**
1. **For \( f(x) = \frac{-x}{2} + u \):**
\[
f'(x) = -\frac{1}{2}
\]
2. **For \( f(x) = \frac{1}{2 \sqrt{x}} \):**
\[
f'(x) = -\frac{1}{4 x^{3/2}}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To differentiate the function \( \frac{-x}{2}+u \) with respect to \( x \), we treat \( u \) as a constant. The derivative is \( \frac{d}{dx} \left( \frac{-x}{2} + u \right) = -\frac{1}{2} \). For \( \frac{1}{2 \sqrt{x}} \), we can rewrite it as \( \frac{1}{2} x^{-1/2} \). Applying the power rule gives us \( \frac{d}{dx} \left( \frac{1}{2 \sqrt{x}} \right) = \frac{1}{2} \cdot \left(-\frac{1}{2}\right) x^{-3/2} = -\frac{1}{4 \sqrt{x^3}} \).