Question
upstudy study bank question image url

Simplity the following as for as possible. (1) \( \frac{x}{x-3}+\frac{2}{1-x} \) (2) \( \frac{x}{x+3}-\frac{2}{3+x} \) (1) \( \frac{2 x}{x-3}+\frac{x+1}{9-x^{3}} \) (4) \( \frac{1}{x^{2}-3 x-4}-\frac{x+1}{4-x} \) (D) \( \frac{x}{2 x^{3}+11 x+5}-\frac{5}{5+x} \) (b) \( \frac{x}{4-1}-\frac{2 x-24}{x^{2}-4 x} \) (7) \( \frac{3}{8 x+6}-\frac{2-x}{6 x} \) (8) \( \frac{x+4}{x^{\frac{1}{2}-2 x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} \) (8) \( \frac{x+2}{4 x^{2}-2 x+1}-\frac{8 x+1}{8 x^{\prime}+1} \)

Ask by Chadwick Ingram. in South Africa
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the given expressions: 1. \( \frac{x}{x-3}+\frac{2}{1-x} = \frac{3x - x^{2} - 6}{4x - x^{2} - 3} \) 2. \( \frac{x}{x+3}-\frac{2}{3+x} = \frac{x - 2}{x + 3} \) 3. \( \frac{2x}{x-3}+\frac{x+1}{9-x^{3}} = \frac{16x - 2x^{4} + x^{2} - 3}{9x - x^{4} - 27 + 3x^{3}} \) 4. \( \frac{1}{x^{2}-3x-4}-\frac{x+1}{4-x} = \frac{2 + x^{2} + 2x}{x^{2} - 3x - 4} \) 5. \( \frac{x}{2x^{3}+11x+5}-\frac{5}{5+x} = \frac{-50x + x^{2} - 10x^{3} - 25}{10x^{3} + 2x^{4} + 60x + 11x^{2} + 25} \) 6. \( \frac{x}{4-1}-\frac{2x-24}{x^{2}-4x} = \frac{x^{3} - 4x^{2} - 6x + 72}{3x^{2} - 12x} \) 7. \( \frac{3}{8x+6}-\frac{2-x}{6x} = \frac{2x - 3 + 2x^{2}}{12x^{2} + 9x} \) 8. \( \frac{x+4}{x^{\frac{1}{2}-2x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} = \frac{-4x - x^{3} + 16 - x\sqrt{x} + 2x^{2} + x^{2}\sqrt{x} - 4\sqrt{x}}{4\sqrt{x} - 4x\sqrt{x} + x^{2}\sqrt{x} - 8x + 8x^{2} - 2x^{3}} \) 9. \( \frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x^{\prime}+1} = \frac{3x + 1 - 4x^{2}}{4x^{2} - 2x + 1} \) If you need further assistance or explanations for any specific expression, feel free to ask!

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+2\right)}{\left(4x^{2}-2x+1\right)}-\frac{\left(8x+1\right)}{\left(8x+1\right)}\) - step1: Remove the parentheses: \(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x+1}\) - step2: Divide the terms: \(\frac{x+2}{4x^{2}-2x+1}-1\) - step3: Reduce fractions to a common denominator: \(\frac{x+2}{4x^{2}-2x+1}-\frac{4x^{2}-2x+1}{4x^{2}-2x+1}\) - step4: Transform the expression: \(\frac{x+2-\left(4x^{2}-2x+1\right)}{4x^{2}-2x+1}\) - step5: Calculate: \(\frac{3x+1-4x^{2}}{4x^{2}-2x+1}\) Calculate or simplify the expression \( (1/(x^2-3*x-4))-(x+1)/(4-x) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1}{\left(x^{2}-3x-4\right)}\right)-\frac{\left(x+1\right)}{\left(4-x\right)}\) - step1: Remove the parentheses: \(\left(\frac{1}{x^{2}-3x-4}\right)-\frac{x+1}{4-x}\) - step2: Remove the parentheses: \(\frac{1}{x^{2}-3x-4}-\frac{x+1}{4-x}\) - step3: Rewrite the fractions: \(\frac{1}{x^{2}-3x-4}+\frac{x+1}{-4+x}\) - step4: Factor the expression: \(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{x+1}{-4+x}\) - step5: Reduce fractions to a common denominator: \(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(-4+x\right)\left(x+1\right)}\) - step6: Rewrite the expression: \(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\) - step7: Transform the expression: \(\frac{1+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\) - step8: Multiply the terms: \(\frac{1+x^{2}+2x+1}{\left(x+1\right)\left(x-4\right)}\) - step9: Add the numbers: \(\frac{2+x^{2}+2x}{\left(x+1\right)\left(x-4\right)}\) - step10: Multiply the terms: \(\frac{2+x^{2}+2x}{x^{2}-3x-4}\) Calculate or simplify the expression \( (x/(x+3))-(2/(3+x)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(x+3\right)}\right)-\left(\frac{2}{\left(3+x\right)}\right)\) - step1: Remove the parentheses: \(\left(\frac{x}{x+3}\right)-\left(\frac{2}{3+x}\right)\) - step2: Remove the parentheses: \(\frac{x}{x+3}-\left(\frac{2}{3+x}\right)\) - step3: Remove the parentheses: \(\frac{x}{x+3}-\frac{2}{3+x}\) - step4: Rewrite the expression: \(\frac{x}{x+3}-\frac{2}{x+3}\) - step5: Transform the expression: \(\frac{x-2}{x+3}\) Calculate or simplify the expression \( (x/(4-1))-(2*x-24)/(x^2-4*x) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(4-1\right)}\right)-\frac{\left(2x-24\right)}{\left(x^{2}-4x\right)}\) - step1: Remove the parentheses: \(\left(\frac{x}{4-1}\right)-\frac{2x-24}{x^{2}-4x}\) - step2: Subtract the numbers: \(\left(\frac{x}{3}\right)-\frac{2x-24}{x^{2}-4x}\) - step3: Remove the parentheses: \(\frac{x}{3}-\frac{2x-24}{x^{2}-4x}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(x^{2}-4x\right)}{3\left(x^{2}-4x\right)}-\frac{\left(2x-24\right)\times 3}{\left(x^{2}-4x\right)\times 3}\) - step5: Reorder the terms: \(\frac{x\left(x^{2}-4x\right)}{3\left(x^{2}-4x\right)}-\frac{\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\) - step6: Transform the expression: \(\frac{x\left(x^{2}-4x\right)-\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\) - step7: Multiply the terms: \(\frac{x^{3}-4x^{2}-\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\) - step8: Multiply the terms: \(\frac{x^{3}-4x^{2}-\left(6x-72\right)}{3\left(x^{2}-4x\right)}\) - step9: Remove the parentheses: \(\frac{x^{3}-4x^{2}-6x+72}{3\left(x^{2}-4x\right)}\) - step10: Simplify: \(\frac{x^{3}-4x^{2}-6x+72}{3x^{2}-12x}\) Calculate or simplify the expression \( (x/(2*x^3+11*x+5))-(5/(5+x)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(2x^{3}+11x+5\right)}\right)-\left(\frac{5}{\left(5+x\right)}\right)\) - step1: Remove the parentheses: \(\left(\frac{x}{2x^{3}+11x+5}\right)-\left(\frac{5}{5+x}\right)\) - step2: Remove the parentheses: \(\frac{x}{2x^{3}+11x+5}-\left(\frac{5}{5+x}\right)\) - step3: Remove the parentheses: \(\frac{x}{2x^{3}+11x+5}-\frac{5}{5+x}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(5+x\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}-\frac{5\left(2x^{3}+11x+5\right)}{\left(5+x\right)\left(2x^{3}+11x+5\right)}\) - step5: Rewrite the expression: \(\frac{x\left(5+x\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}-\frac{5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\) - step6: Transform the expression: \(\frac{x\left(5+x\right)-5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\) - step7: Multiply the terms: \(\frac{5x+x^{2}-5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\) - step8: Multiply the terms: \(\frac{5x+x^{2}-\left(10x^{3}+55x+25\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\) - step9: Calculate: \(\frac{-50x+x^{2}-10x^{3}-25}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\) - step10: Multiply the terms: \(\frac{-50x+x^{2}-10x^{3}-25}{10x^{3}+2x^{4}+60x+11x^{2}+25}\) Calculate or simplify the expression \( (x/(x-3))+(2/(1-x)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(x-3\right)}\right)+\left(\frac{2}{\left(1-x\right)}\right)\) - step1: Remove the parentheses: \(\left(\frac{x}{x-3}\right)+\left(\frac{2}{1-x}\right)\) - step2: Remove the parentheses: \(\frac{x}{x-3}+\left(\frac{2}{1-x}\right)\) - step3: Remove the parentheses: \(\frac{x}{x-3}+\frac{2}{1-x}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(1-x\right)}{\left(x-3\right)\left(1-x\right)}+\frac{2\left(x-3\right)}{\left(1-x\right)\left(x-3\right)}\) - step5: Rewrite the expression: \(\frac{x\left(1-x\right)}{\left(x-3\right)\left(1-x\right)}+\frac{2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\) - step6: Transform the expression: \(\frac{x\left(1-x\right)+2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\) - step7: Multiply the terms: \(\frac{x-x^{2}+2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\) - step8: Multiply the terms: \(\frac{x-x^{2}+2x-6}{\left(x-3\right)\left(1-x\right)}\) - step9: Add the terms: \(\frac{3x-x^{2}-6}{\left(x-3\right)\left(1-x\right)}\) - step10: Multiply the terms: \(\frac{3x-x^{2}-6}{4x-x^{2}-3}\) Calculate or simplify the expression \( (3/(8*x+6))-(2-x)/(6*x) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3}{\left(8x+6\right)}\right)-\frac{\left(2-x\right)}{6x}\) - step1: Remove the parentheses: \(\left(\frac{3}{8x+6}\right)-\frac{2-x}{6x}\) - step2: Remove the parentheses: \(\frac{3}{8x+6}-\frac{2-x}{6x}\) - step3: Factor the expression: \(\frac{3}{2\left(4x+3\right)}-\frac{2-x}{6x}\) - step4: Reduce fractions to a common denominator: \(\frac{3\times 3x}{2\left(4x+3\right)\times 3x}-\frac{\left(2-x\right)\left(4x+3\right)}{6x\left(4x+3\right)}\) - step5: Multiply the numbers: \(\frac{3\times 3x}{6\left(4x+3\right)x}-\frac{\left(2-x\right)\left(4x+3\right)}{6x\left(4x+3\right)}\) - step6: Rewrite the expression: \(\frac{3\times 3x}{6\left(4x+3\right)x}-\frac{\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\) - step7: Transform the expression: \(\frac{3\times 3x-\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\) - step8: Multiply the terms: \(\frac{9x-\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\) - step9: Multiply the terms: \(\frac{9x-\left(5x+6-4x^{2}\right)}{6\left(4x+3\right)x}\) - step10: Subtract the terms: \(\frac{4x-6+4x^{2}}{6\left(4x+3\right)x}\) - step11: Factor: \(\frac{2\left(2x-3+2x^{2}\right)}{6\left(4x+3\right)x}\) - step12: Reduce the fraction: \(\frac{2x-3+2x^{2}}{3\left(4x+3\right)x}\) - step13: Simplify: \(\frac{2x-3+2x^{2}}{3x\left(4x+3\right)}\) - step14: Multiply the terms: \(\frac{2x-3+2x^{2}}{12x^{2}+9x}\) Calculate or simplify the expression \( (2*x/(x-3))+(x+1)/(9-x^3) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{2x}{\left(x-3\right)}\right)+\frac{\left(x+1\right)}{\left(9-x^{3}\right)}\) - step1: Remove the parentheses: \(\left(\frac{2x}{x-3}\right)+\frac{x+1}{9-x^{3}}\) - step2: Remove the parentheses: \(\frac{2x}{x-3}+\frac{x+1}{9-x^{3}}\) - step3: Reduce fractions to a common denominator: \(\frac{2x\left(9-x^{3}\right)}{\left(x-3\right)\left(9-x^{3}\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(9-x^{3}\right)\left(x-3\right)}\) - step4: Rewrite the expression: \(\frac{2x\left(9-x^{3}\right)}{\left(x-3\right)\left(9-x^{3}\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\) - step5: Transform the expression: \(\frac{2x\left(9-x^{3}\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\) - step6: Multiply the terms: \(\frac{18x-2x^{4}+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\) - step7: Multiply the terms: \(\frac{18x-2x^{4}+x^{2}-2x-3}{\left(x-3\right)\left(9-x^{3}\right)}\) - step8: Subtract the terms: \(\frac{16x-2x^{4}+x^{2}-3}{\left(x-3\right)\left(9-x^{3}\right)}\) - step9: Multiply the terms: \(\frac{16x-2x^{4}+x^{2}-3}{9x-x^{4}-27+3x^{3}}\) Calculate or simplify the expression \( (x+4)/(x^(1/2)-2*x)-(x/(2-x)^2)+(x+2)/(x-2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+4\right)}{\left(x^{\frac{1}{2}}-2x\right)}-\left(\frac{x}{\left(2-x\right)^{2}}\right)+\frac{\left(x+2\right)}{\left(x-2\right)}\) - step1: Remove the parentheses: \(\frac{x+4}{x^{\frac{1}{2}}-2x}-\left(\frac{x}{\left(2-x\right)^{2}}\right)+\frac{x+2}{x-2}\) - step2: Remove the parentheses: \(\frac{x+4}{x^{\frac{1}{2}}-2x}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\) - step3: Reduce fractions to a common denominator: \(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(2-x\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x-2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}\) - step4: Multiply: \(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(2-x\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x-2\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}\) - step5: Rewrite the expression: \(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step6: Transform the expression: \(\frac{\left(x+4\right)\left(2-x\right)^{2}-x\left(x^{\frac{1}{2}}-2x\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step7: Expand the expression: \(\frac{-12x+x^{3}+16-x\left(x^{\frac{1}{2}}-2x\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step8: Multiply the terms: \(\frac{-12x+x^{3}+16-\left(x^{\frac{3}{2}}-2x^{2}\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step9: Multiply the terms: \(\frac{-12x+x^{3}+16-\left(x^{\frac{3}{2}}-2x^{2}\right)+x^{\frac{5}{2}}-2x^{3}-4x^{\frac{1}{2}}+8x}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step10: Calculate: \(\frac{-4x-x^{3}+16-x^{\frac{3}{2}}+2x^{2}+x^{\frac{5}{2}}-4x^{\frac{1}{2}}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step11: Simplify: \(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\) - step12: Simplify: \(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}-2x\right)\left(2-x\right)^{2}}\) - step13: Expand the expression: \(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{4\sqrt{x}-4x\sqrt{x}+x^{2}\sqrt{x}-8x+8x^{2}-2x^{3}}\) Here are the simplified forms of the given expressions: 1. **Expression:** \( \frac{x}{x-3}+\frac{2}{1-x} \) **Simplified Form:** \( \frac{3x-x^{2}-6}{4x-x^{2}-3} \) 2. **Expression:** \( \frac{x}{x+3}-\frac{2}{3+x} \) **Simplified Form:** \( \frac{x-2}{x+3} \) 3. **Expression:** \( \frac{2 x}{x-3}+\frac{x+1}{9-x^{3}} \) **Simplified Form:** \( \frac{16x-2x^{4}+x^{2}-3}{9x-x^{4}-27+3x^{3}} \) 4. **Expression:** \( \frac{1}{x^{2}-3 x-4}-\frac{x+1}{4-x} \) **Simplified Form:** \( \frac{2+x^{2}+2x}{x^{2}-3x-4} \) 5. **Expression:** \( \frac{x}{2 x^{3}+11 x+5}-\frac{5}{5+x} \) **Simplified Form:** \( \frac{-50x+x^{2}-10x^{3}-25}{10x^{3}+2x^{4}+60x+11x^{2}+25} \) 6. **Expression:** \( \frac{x}{4-1}-\frac{2 x-24}{x^{2}-4 x} \) **Simplified Form:** \( \frac{x^{3}-4x^{2}-6x+72}{3x^{2}-12x} \) 7. **Expression:** \( \frac{3}{8 x+6}-\frac{2-x}{6 x} \) **Simplified Form:** \( \frac{2x-3+2x^{2}}{12x^{2}+9x} \) 8. **Expression:** \( \frac{x+4}{x^{\frac{1}{2}-2 x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} \) **Simplified Form:** \( \frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{4\sqrt{x}-4x\sqrt{x}+x^{2}\sqrt{x}-8x+8x^{2}-2x^{3}} \) 9. **Expression:** \( \frac{x+2}{4 x^{2}-2 x+1}-\frac{8 x+1}{8 x^{\prime}+1} \) **Simplified Form:** \( \frac{3x+1-4x^{2}}{4x^{2}-2x+1} \) If you need further assistance or explanations for any specific expression, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Let's simplify each expression step by step! (1) \( \frac{x}{x-3}+\frac{2}{1-x} \) We can rewrite \( \frac{2}{1-x} \) as \( -\frac{2}{x-1} \) and find a common denominator: \[ \frac{x}{x-3} - \frac{2}{x-1} = \frac{x(x-1) - 2(x-3)}{(x-3)(x-1)} = \frac{x^2 - x - 2x + 6}{(x-3)(x-1)} = \frac{x^2 - 3x + 6}{(x-3)(x-1)} \] (2) \( \frac{x}{x+3}-\frac{2}{3+x} \) Rewriting \( 3+x \) as \( x+3 \), we have: \[ \frac{x}{x+3} - \frac{2}{x+3} = \frac{x - 2}{x+3} \] (3) \( \frac{2 x}{x-3}+\frac{x+1}{9-x^{3}} \) Noticing \( 9 - x^3 \) factors as \( (3-x)(3+x^2) \) We rewrite: \[ \frac{2x}{x-3} + \frac{x+1}{-(x-3)(3+x^2)} = \frac{2x(x-3) - (x+1)}{-(x-3)(3+x^2)} = \frac{-2x^2 + 6 - x - 1}{-(x-3)(3+x^2)} = \frac{-2x^2 + 5}{-(x-3)(3+x^2)} \] (4) \( \frac{1}{x^{2}-3 x-4}-\frac{x+1}{4-x} \) Rearranging \( 4-x \) gives \( -(x-4) \): \[ \frac{1}{(x-4)(x+1)} + \frac{x+1}{x-4} = \frac{1 + (x+1)^2}{(x-4)(x+1)} = \frac{1 + x^2 + 2x + 1}{(x-4)(x+1)} = \frac{x^2 + 2x + 2}{(x-4)(x+1)} \] Now, let's do (D): \( \frac{x}{2 x^{3}+11 x+5}-\frac{5}{5+x} \) Find a common denominator: \[ \frac{x(5+x) - 5(2x^3 + 11x + 5)}{(2x^3 + 11x + 5)(5+x)} \] Lastly, (b) \( \frac{x}{4-1}-\frac{2 x-24}{x^{2}-4 x} \) First term simplifies to \( \frac{x}{3} \) and second provides \( \frac{-(2x-24)}{x(x-4)} \): \[ \frac{x}{3} - \frac{2(x-12)}{x(x-4)} = \text{put over a common denominator} \] For (7): \( \frac{3}{8 x + 6} - \frac{2-x}{6 x} \) Combine fractions and simplify: \[ \text{Factor both denominators and perform algebraic additions} \] For (8): \( \frac{x+4}{x^{\frac{1}{2}-2 x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} \) Under common denominators and simplifications, it leads to finding a common algebraic form. Each of these operations is fun with a bit of arithmetic and polynomial manipulation! Keep practicing to feel like a math magician!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy