Answer
Here are the simplified forms of the given expressions:
1. \( \frac{x}{x-3}+\frac{2}{1-x} = \frac{3x - x^{2} - 6}{4x - x^{2} - 3} \)
2. \( \frac{x}{x+3}-\frac{2}{3+x} = \frac{x - 2}{x + 3} \)
3. \( \frac{2x}{x-3}+\frac{x+1}{9-x^{3}} = \frac{16x - 2x^{4} + x^{2} - 3}{9x - x^{4} - 27 + 3x^{3}} \)
4. \( \frac{1}{x^{2}-3x-4}-\frac{x+1}{4-x} = \frac{2 + x^{2} + 2x}{x^{2} - 3x - 4} \)
5. \( \frac{x}{2x^{3}+11x+5}-\frac{5}{5+x} = \frac{-50x + x^{2} - 10x^{3} - 25}{10x^{3} + 2x^{4} + 60x + 11x^{2} + 25} \)
6. \( \frac{x}{4-1}-\frac{2x-24}{x^{2}-4x} = \frac{x^{3} - 4x^{2} - 6x + 72}{3x^{2} - 12x} \)
7. \( \frac{3}{8x+6}-\frac{2-x}{6x} = \frac{2x - 3 + 2x^{2}}{12x^{2} + 9x} \)
8. \( \frac{x+4}{x^{\frac{1}{2}-2x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} = \frac{-4x - x^{3} + 16 - x\sqrt{x} + 2x^{2} + x^{2}\sqrt{x} - 4\sqrt{x}}{4\sqrt{x} - 4x\sqrt{x} + x^{2}\sqrt{x} - 8x + 8x^{2} - 2x^{3}} \)
9. \( \frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x^{\prime}+1} = \frac{3x + 1 - 4x^{2}}{4x^{2} - 2x + 1} \)
If you need further assistance or explanations for any specific expression, feel free to ask!
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+2\right)}{\left(4x^{2}-2x+1\right)}-\frac{\left(8x+1\right)}{\left(8x+1\right)}\)
- step1: Remove the parentheses:
\(\frac{x+2}{4x^{2}-2x+1}-\frac{8x+1}{8x+1}\)
- step2: Divide the terms:
\(\frac{x+2}{4x^{2}-2x+1}-1\)
- step3: Reduce fractions to a common denominator:
\(\frac{x+2}{4x^{2}-2x+1}-\frac{4x^{2}-2x+1}{4x^{2}-2x+1}\)
- step4: Transform the expression:
\(\frac{x+2-\left(4x^{2}-2x+1\right)}{4x^{2}-2x+1}\)
- step5: Calculate:
\(\frac{3x+1-4x^{2}}{4x^{2}-2x+1}\)
Calculate or simplify the expression \( (1/(x^2-3*x-4))-(x+1)/(4-x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{1}{\left(x^{2}-3x-4\right)}\right)-\frac{\left(x+1\right)}{\left(4-x\right)}\)
- step1: Remove the parentheses:
\(\left(\frac{1}{x^{2}-3x-4}\right)-\frac{x+1}{4-x}\)
- step2: Remove the parentheses:
\(\frac{1}{x^{2}-3x-4}-\frac{x+1}{4-x}\)
- step3: Rewrite the fractions:
\(\frac{1}{x^{2}-3x-4}+\frac{x+1}{-4+x}\)
- step4: Factor the expression:
\(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{x+1}{-4+x}\)
- step5: Reduce fractions to a common denominator:
\(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(-4+x\right)\left(x+1\right)}\)
- step6: Rewrite the expression:
\(\frac{1}{\left(x+1\right)\left(x-4\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)
- step7: Transform the expression:
\(\frac{1+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)
- step8: Multiply the terms:
\(\frac{1+x^{2}+2x+1}{\left(x+1\right)\left(x-4\right)}\)
- step9: Add the numbers:
\(\frac{2+x^{2}+2x}{\left(x+1\right)\left(x-4\right)}\)
- step10: Multiply the terms:
\(\frac{2+x^{2}+2x}{x^{2}-3x-4}\)
Calculate or simplify the expression \( (x/(x+3))-(2/(3+x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(x+3\right)}\right)-\left(\frac{2}{\left(3+x\right)}\right)\)
- step1: Remove the parentheses:
\(\left(\frac{x}{x+3}\right)-\left(\frac{2}{3+x}\right)\)
- step2: Remove the parentheses:
\(\frac{x}{x+3}-\left(\frac{2}{3+x}\right)\)
- step3: Remove the parentheses:
\(\frac{x}{x+3}-\frac{2}{3+x}\)
- step4: Rewrite the expression:
\(\frac{x}{x+3}-\frac{2}{x+3}\)
- step5: Transform the expression:
\(\frac{x-2}{x+3}\)
Calculate or simplify the expression \( (x/(4-1))-(2*x-24)/(x^2-4*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(4-1\right)}\right)-\frac{\left(2x-24\right)}{\left(x^{2}-4x\right)}\)
- step1: Remove the parentheses:
\(\left(\frac{x}{4-1}\right)-\frac{2x-24}{x^{2}-4x}\)
- step2: Subtract the numbers:
\(\left(\frac{x}{3}\right)-\frac{2x-24}{x^{2}-4x}\)
- step3: Remove the parentheses:
\(\frac{x}{3}-\frac{2x-24}{x^{2}-4x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{x\left(x^{2}-4x\right)}{3\left(x^{2}-4x\right)}-\frac{\left(2x-24\right)\times 3}{\left(x^{2}-4x\right)\times 3}\)
- step5: Reorder the terms:
\(\frac{x\left(x^{2}-4x\right)}{3\left(x^{2}-4x\right)}-\frac{\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\)
- step6: Transform the expression:
\(\frac{x\left(x^{2}-4x\right)-\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\)
- step7: Multiply the terms:
\(\frac{x^{3}-4x^{2}-\left(2x-24\right)\times 3}{3\left(x^{2}-4x\right)}\)
- step8: Multiply the terms:
\(\frac{x^{3}-4x^{2}-\left(6x-72\right)}{3\left(x^{2}-4x\right)}\)
- step9: Remove the parentheses:
\(\frac{x^{3}-4x^{2}-6x+72}{3\left(x^{2}-4x\right)}\)
- step10: Simplify:
\(\frac{x^{3}-4x^{2}-6x+72}{3x^{2}-12x}\)
Calculate or simplify the expression \( (x/(2*x^3+11*x+5))-(5/(5+x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(2x^{3}+11x+5\right)}\right)-\left(\frac{5}{\left(5+x\right)}\right)\)
- step1: Remove the parentheses:
\(\left(\frac{x}{2x^{3}+11x+5}\right)-\left(\frac{5}{5+x}\right)\)
- step2: Remove the parentheses:
\(\frac{x}{2x^{3}+11x+5}-\left(\frac{5}{5+x}\right)\)
- step3: Remove the parentheses:
\(\frac{x}{2x^{3}+11x+5}-\frac{5}{5+x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{x\left(5+x\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}-\frac{5\left(2x^{3}+11x+5\right)}{\left(5+x\right)\left(2x^{3}+11x+5\right)}\)
- step5: Rewrite the expression:
\(\frac{x\left(5+x\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}-\frac{5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\)
- step6: Transform the expression:
\(\frac{x\left(5+x\right)-5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\)
- step7: Multiply the terms:
\(\frac{5x+x^{2}-5\left(2x^{3}+11x+5\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\)
- step8: Multiply the terms:
\(\frac{5x+x^{2}-\left(10x^{3}+55x+25\right)}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\)
- step9: Calculate:
\(\frac{-50x+x^{2}-10x^{3}-25}{\left(2x^{3}+11x+5\right)\left(5+x\right)}\)
- step10: Multiply the terms:
\(\frac{-50x+x^{2}-10x^{3}-25}{10x^{3}+2x^{4}+60x+11x^{2}+25}\)
Calculate or simplify the expression \( (x/(x-3))+(2/(1-x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(x-3\right)}\right)+\left(\frac{2}{\left(1-x\right)}\right)\)
- step1: Remove the parentheses:
\(\left(\frac{x}{x-3}\right)+\left(\frac{2}{1-x}\right)\)
- step2: Remove the parentheses:
\(\frac{x}{x-3}+\left(\frac{2}{1-x}\right)\)
- step3: Remove the parentheses:
\(\frac{x}{x-3}+\frac{2}{1-x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{x\left(1-x\right)}{\left(x-3\right)\left(1-x\right)}+\frac{2\left(x-3\right)}{\left(1-x\right)\left(x-3\right)}\)
- step5: Rewrite the expression:
\(\frac{x\left(1-x\right)}{\left(x-3\right)\left(1-x\right)}+\frac{2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\)
- step6: Transform the expression:
\(\frac{x\left(1-x\right)+2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\)
- step7: Multiply the terms:
\(\frac{x-x^{2}+2\left(x-3\right)}{\left(x-3\right)\left(1-x\right)}\)
- step8: Multiply the terms:
\(\frac{x-x^{2}+2x-6}{\left(x-3\right)\left(1-x\right)}\)
- step9: Add the terms:
\(\frac{3x-x^{2}-6}{\left(x-3\right)\left(1-x\right)}\)
- step10: Multiply the terms:
\(\frac{3x-x^{2}-6}{4x-x^{2}-3}\)
Calculate or simplify the expression \( (3/(8*x+6))-(2-x)/(6*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{3}{\left(8x+6\right)}\right)-\frac{\left(2-x\right)}{6x}\)
- step1: Remove the parentheses:
\(\left(\frac{3}{8x+6}\right)-\frac{2-x}{6x}\)
- step2: Remove the parentheses:
\(\frac{3}{8x+6}-\frac{2-x}{6x}\)
- step3: Factor the expression:
\(\frac{3}{2\left(4x+3\right)}-\frac{2-x}{6x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{3\times 3x}{2\left(4x+3\right)\times 3x}-\frac{\left(2-x\right)\left(4x+3\right)}{6x\left(4x+3\right)}\)
- step5: Multiply the numbers:
\(\frac{3\times 3x}{6\left(4x+3\right)x}-\frac{\left(2-x\right)\left(4x+3\right)}{6x\left(4x+3\right)}\)
- step6: Rewrite the expression:
\(\frac{3\times 3x}{6\left(4x+3\right)x}-\frac{\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\)
- step7: Transform the expression:
\(\frac{3\times 3x-\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\)
- step8: Multiply the terms:
\(\frac{9x-\left(2-x\right)\left(4x+3\right)}{6\left(4x+3\right)x}\)
- step9: Multiply the terms:
\(\frac{9x-\left(5x+6-4x^{2}\right)}{6\left(4x+3\right)x}\)
- step10: Subtract the terms:
\(\frac{4x-6+4x^{2}}{6\left(4x+3\right)x}\)
- step11: Factor:
\(\frac{2\left(2x-3+2x^{2}\right)}{6\left(4x+3\right)x}\)
- step12: Reduce the fraction:
\(\frac{2x-3+2x^{2}}{3\left(4x+3\right)x}\)
- step13: Simplify:
\(\frac{2x-3+2x^{2}}{3x\left(4x+3\right)}\)
- step14: Multiply the terms:
\(\frac{2x-3+2x^{2}}{12x^{2}+9x}\)
Calculate or simplify the expression \( (2*x/(x-3))+(x+1)/(9-x^3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{2x}{\left(x-3\right)}\right)+\frac{\left(x+1\right)}{\left(9-x^{3}\right)}\)
- step1: Remove the parentheses:
\(\left(\frac{2x}{x-3}\right)+\frac{x+1}{9-x^{3}}\)
- step2: Remove the parentheses:
\(\frac{2x}{x-3}+\frac{x+1}{9-x^{3}}\)
- step3: Reduce fractions to a common denominator:
\(\frac{2x\left(9-x^{3}\right)}{\left(x-3\right)\left(9-x^{3}\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(9-x^{3}\right)\left(x-3\right)}\)
- step4: Rewrite the expression:
\(\frac{2x\left(9-x^{3}\right)}{\left(x-3\right)\left(9-x^{3}\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\)
- step5: Transform the expression:
\(\frac{2x\left(9-x^{3}\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\)
- step6: Multiply the terms:
\(\frac{18x-2x^{4}+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(9-x^{3}\right)}\)
- step7: Multiply the terms:
\(\frac{18x-2x^{4}+x^{2}-2x-3}{\left(x-3\right)\left(9-x^{3}\right)}\)
- step8: Subtract the terms:
\(\frac{16x-2x^{4}+x^{2}-3}{\left(x-3\right)\left(9-x^{3}\right)}\)
- step9: Multiply the terms:
\(\frac{16x-2x^{4}+x^{2}-3}{9x-x^{4}-27+3x^{3}}\)
Calculate or simplify the expression \( (x+4)/(x^(1/2)-2*x)-(x/(2-x)^2)+(x+2)/(x-2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+4\right)}{\left(x^{\frac{1}{2}}-2x\right)}-\left(\frac{x}{\left(2-x\right)^{2}}\right)+\frac{\left(x+2\right)}{\left(x-2\right)}\)
- step1: Remove the parentheses:
\(\frac{x+4}{x^{\frac{1}{2}}-2x}-\left(\frac{x}{\left(2-x\right)^{2}}\right)+\frac{x+2}{x-2}\)
- step2: Remove the parentheses:
\(\frac{x+4}{x^{\frac{1}{2}}-2x}-\frac{x}{\left(2-x\right)^{2}}+\frac{x+2}{x-2}\)
- step3: Reduce fractions to a common denominator:
\(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(2-x\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x-2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}\)
- step4: Multiply:
\(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(2-x\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x-2\right)^{2}\left(x^{\frac{1}{2}}-2x\right)}\)
- step5: Rewrite the expression:
\(\frac{\left(x+4\right)\left(2-x\right)^{2}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}-\frac{x\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}+\frac{\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step6: Transform the expression:
\(\frac{\left(x+4\right)\left(2-x\right)^{2}-x\left(x^{\frac{1}{2}}-2x\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step7: Expand the expression:
\(\frac{-12x+x^{3}+16-x\left(x^{\frac{1}{2}}-2x\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step8: Multiply the terms:
\(\frac{-12x+x^{3}+16-\left(x^{\frac{3}{2}}-2x^{2}\right)+\left(x+2\right)\left(x-2\right)\left(x^{\frac{1}{2}}-2x\right)}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step9: Multiply the terms:
\(\frac{-12x+x^{3}+16-\left(x^{\frac{3}{2}}-2x^{2}\right)+x^{\frac{5}{2}}-2x^{3}-4x^{\frac{1}{2}}+8x}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step10: Calculate:
\(\frac{-4x-x^{3}+16-x^{\frac{3}{2}}+2x^{2}+x^{\frac{5}{2}}-4x^{\frac{1}{2}}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step11: Simplify:
\(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{\left(x^{\frac{1}{2}}-2x\right)\left(2-x\right)^{2}}\)
- step12: Simplify:
\(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}-2x\right)\left(2-x\right)^{2}}\)
- step13: Expand the expression:
\(\frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{4\sqrt{x}-4x\sqrt{x}+x^{2}\sqrt{x}-8x+8x^{2}-2x^{3}}\)
Here are the simplified forms of the given expressions:
1. **Expression:** \( \frac{x}{x-3}+\frac{2}{1-x} \)
**Simplified Form:** \( \frac{3x-x^{2}-6}{4x-x^{2}-3} \)
2. **Expression:** \( \frac{x}{x+3}-\frac{2}{3+x} \)
**Simplified Form:** \( \frac{x-2}{x+3} \)
3. **Expression:** \( \frac{2 x}{x-3}+\frac{x+1}{9-x^{3}} \)
**Simplified Form:** \( \frac{16x-2x^{4}+x^{2}-3}{9x-x^{4}-27+3x^{3}} \)
4. **Expression:** \( \frac{1}{x^{2}-3 x-4}-\frac{x+1}{4-x} \)
**Simplified Form:** \( \frac{2+x^{2}+2x}{x^{2}-3x-4} \)
5. **Expression:** \( \frac{x}{2 x^{3}+11 x+5}-\frac{5}{5+x} \)
**Simplified Form:** \( \frac{-50x+x^{2}-10x^{3}-25}{10x^{3}+2x^{4}+60x+11x^{2}+25} \)
6. **Expression:** \( \frac{x}{4-1}-\frac{2 x-24}{x^{2}-4 x} \)
**Simplified Form:** \( \frac{x^{3}-4x^{2}-6x+72}{3x^{2}-12x} \)
7. **Expression:** \( \frac{3}{8 x+6}-\frac{2-x}{6 x} \)
**Simplified Form:** \( \frac{2x-3+2x^{2}}{12x^{2}+9x} \)
8. **Expression:** \( \frac{x+4}{x^{\frac{1}{2}-2 x}}-\frac{x}{(2-x)^{2}}+\frac{x+2}{x-2} \)
**Simplified Form:** \( \frac{-4x-x^{3}+16-x\sqrt{x}+2x^{2}+x^{2}\sqrt{x}-4\sqrt{x}}{4\sqrt{x}-4x\sqrt{x}+x^{2}\sqrt{x}-8x+8x^{2}-2x^{3}} \)
9. **Expression:** \( \frac{x+2}{4 x^{2}-2 x+1}-\frac{8 x+1}{8 x^{\prime}+1} \)
**Simplified Form:** \( \frac{3x+1-4x^{2}}{4x^{2}-2x+1} \)
If you need further assistance or explanations for any specific expression, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution