Question
upstudy study bank question image url

Use synthetic division to find the quotient. \[ \begin{array}{l}\frac{2 x^{4}+x-6}{x-1}\end{array} \] \( [?] x^{3}+\quad x^{2}+x+\square+\overline{x-1} \)

Ask by Ford Pearson. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El cociente es \( 2x^{3} + 2x^{2} + 2x + 3 \) con residuo –3.

Solution

Vamos a usar la división sintética para dividir   2x⁴ + 0x³ + 0x² + x – 6  entre  x – 1. Paso 1. Escribimos los coeficientes del dividendo, teniendo en cuenta los términos que faltan, de izquierda a derecha:   2  0  0  1  –6 El valor de la raíz del divisor es c = 1 (porque x – 1 = 0 implica x = 1). Paso 2. Procedemos con la división sintética:         _________________________ 1 | 2   0   0   1  –6          2   2   2   3      ---------------------------------     2   2   2   3  –3 Explicación de cada paso: 1. Bajamos el 2 (el primer coeficiente). 2. Multiplicamos 2 × 1 = 2 y lo escribimos debajo del 0 (el segundo coeficiente); sumamos: 0 + 2 = 2. 3. Multiplicamos 2 × 1 = 2 y lo escribimos debajo del 0 (el tercer coeficiente); sumamos: 0 + 2 = 2. 4. Multiplicamos 2 × 1 = 2 y lo escribimos debajo del 1 (el cuarto coeficiente); sumamos: 1 + 2 = 3. 5. Multiplicamos 3 × 1 = 3 y lo escribimos debajo de –6 (el quinto coeficiente); sumamos: –6 + 3 = –3. El resultado nos da:  • Cociente: 2x³ + 2x² + 2x + 3  • Residuo: –3 Por lo tanto, se puede escribir:   (2x⁴ + x – 6) ÷ (x – 1) = 2x³ + 2x² + 2x + 3 – 3/(x – 1) Si en el formato solicitado necesitamos llenar los cuadros, el resultado es:   [2]x³ + [2]x² + [2]x + [3] + overline{–3} (resto sobre x – 1). Respuesta final: El cociente es 2x³ + 2x² + 2x + 3 con residuo –3.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To perform synthetic division of \(2x^4 + 0x^3 + 0x^2 + x - 6\) by \(x - 1\), we start by using \(1\) (the root of \(x - 1 = 0\)). We set up our synthetic division with the coefficients: \(2, 0, 0, 1, -6\). Here's how it looks: ``` 1 | 2 0 0 1 -6 | 2 2 3 4 ----------------------- 2 2 2 4 -2 ``` So, the quotient is \(2x^3 + 2x^2 + 2x + 4\) with a remainder of \(-2\). Therefore, \[ \frac{2x^4 + x - 6}{x - 1} = 2x^3 + 2x^2 + 2x + 4 - \frac{2}{x-1} \] In the form provided, it fits as: \[ 2x^3 + 2x^2 + 2x + 4 + \overline{-2} \] Feel free to reach out if you have any more questions about synthetic division!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy