If \( f(x)=(4 x+8)^{-2} \), find \( f^{\prime}(x) \). Find \( f^{\prime}(4) \).
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To find \( f^{\prime}(x) \) for the function \( f(x)=(4x+8)^{-2} \), we will use the chain rule. 1. We differentiate \( f(x) \): \[ f^{\prime}(x) = -2(4x+8)^{-3} \cdot (4) = -8(4x+8)^{-3}. \] Now, we substitute \( x = 4 \) into \( f^{\prime}(x) \) to find \( f^{\prime}(4) \): 2. Calculate \( f(4) \): \[ f(4) = (4 \cdot 4 + 8)^{-2} = (16 + 8)^{-2} = 24^{-2} = \frac{1}{576}. \] 3. Substitute \( x = 4 \): \[ f^{\prime}(4) = -8(4 \cdot 4 + 8)^{-3} = -8 \cdot 24^{-3} = -8 \cdot \frac{1}{13824} = -\frac{8}{13824} = -\frac{1}{1728}. \] Thus, the derivative at \( x = 4 \) is: \[ f^{\prime}(4) = -\frac{1}{1728}. \]