If \( \cos \theta \approx 0.3090 \), which of the following represents approximate values of \( \sin \theta \) and \( \tan \theta \), for \( 0^{\circ}<\theta<90^{\circ} \) ? \( \sin \theta \approx 0.9511 ; \tan \theta \approx 0.3249 \) \( \sin \theta \approx 0.9511 ; \tan \theta \approx 3.0780 \) \( \sin \theta \approx 3.2362 ; \tan \theta \approx 0.0955 \) \( \sin \theta \approx 3.2362 ; \tan \theta \approx 10.4731 \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To find the values of \( \sin \theta \) and \( \tan \theta \) given \( \cos \theta \approx 0.3090 \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the given value: \[ \sin^2 \theta + (0.3090)^2 = 1 \implies \sin^2 \theta + 0.0956 \approx 1 \implies \sin^2 \theta \approx 0.9044 \implies \sin \theta \approx 0.9511 \] Now, \( \tan \theta = \frac{\sin \theta}{\cos \theta} \approx \frac{0.9511}{0.3090} \approx 3.0780 \). Thus, the correct approximation values are: \( \sin \theta \approx 0.9511 ; \tan \theta \approx 3.0780 \) So, the answer is the second option.