Answer
The solutions are:
1. No real solution for \(36x^2+7x=-2\).
2. \(x = -\frac{12+\sqrt{249}}{7}\) and \(x = \frac{-12+\sqrt{249}}{7}\) for \(7x^2+24x=15\).
3. \(x = -7\) and \(x = 8\) for \((x+2)(x-3) = 50\).
Solution
Solve the equation \( 36x^2+7x=-2 \).
Solve the equation(The complex numbers system) by following steps:
- step0: Solve using the quadratic formula in the complex numbers system:
\(36x^{2}+7x=-2\)
- step1: Move the expression to the left side:
\(36x^{2}+7x+2=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-7\pm \sqrt{7^{2}-4\times 36\times 2}}{2\times 36}\)
- step3: Simplify the expression:
\(x=\frac{-7\pm \sqrt{7^{2}-4\times 36\times 2}}{72}\)
- step4: Simplify the expression:
\(x=\frac{-7\pm \sqrt{-239}}{72}\)
- step5: Simplify the expression:
\(x=\frac{-7\pm \sqrt{239}\times i}{72}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-7+\sqrt{239}\times i}{72}\\&x=\frac{-7-\sqrt{239}\times i}{72}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\\&x=\frac{-7-\sqrt{239}\times i}{72}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\\&x=-\frac{7}{72}-\frac{\sqrt{239}}{72}i\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{7}{72}-\frac{\sqrt{239}}{72}i,x_{2}=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\)
- step10: Remove the complex number(s):
\(\textrm{No real solution}\)
Solve the equation \( 7x^2+24x=15 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(7x^{2}+24x=15\)
- step1: Move the expression to the left side:
\(7x^{2}+24x-15=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{2\times 7}\)
- step3: Simplify the expression:
\(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{14}\)
- step4: Simplify the expression:
\(x=\frac{-24\pm \sqrt{996}}{14}\)
- step5: Simplify the expression:
\(x=\frac{-24\pm 2\sqrt{249}}{14}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-24+2\sqrt{249}}{14}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=-\frac{12+\sqrt{249}}{7}\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{12+\sqrt{249}}{7},x_{2}=\frac{-12+\sqrt{249}}{7}\)
Solve the equation \( (x+2)(x-3) = 50 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(\left(x+2\right)\left(x-3\right)=50\)
- step1: Expand the expression:
\(x^{2}-x-6=50\)
- step2: Move the expression to the left side:
\(x^{2}-x-56=0\)
- step3: Factor the expression:
\(\left(x-8\right)\left(x+7\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&x-8=0\\&x+7=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=8\\&x=-7\end{align}\)
- step6: Rewrite:
\(x_{1}=-7,x_{2}=8\)
The solutions to the given equations are:
1. \(36x^2+7x=-2\) has no real solution.
2. \(7x^2+24x=15\) has two real solutions: \(x_{1}=-\frac{12+\sqrt{249}}{7}\) and \(x_{2}=\frac{-12+\sqrt{249}}{7}\).
3. \((x+2)(x-3) = 50\) has two real solutions: \(x_{1}=-7\) and \(x_{2}=8\).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution