Pregunta
upstudy study bank question image url

\( 36 x^{2}+7 x=-2 \) 4 \( 7 x^{2}+24 x=15 \) 5. \( (x+2)(x-3) 50 \)

Ask by Byrd Weston. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: 1. No real solution for \(36x^2+7x=-2\). 2. \(x = -\frac{12+\sqrt{249}}{7}\) and \(x = \frac{-12+\sqrt{249}}{7}\) for \(7x^2+24x=15\). 3. \(x = -7\) and \(x = 8\) for \((x+2)(x-3) = 50\).

Solución

Solve the equation \( 36x^2+7x=-2 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using the quadratic formula in the complex numbers system: \(36x^{2}+7x=-2\) - step1: Move the expression to the left side: \(36x^{2}+7x+2=0\) - step2: Solve using the quadratic formula: \(x=\frac{-7\pm \sqrt{7^{2}-4\times 36\times 2}}{2\times 36}\) - step3: Simplify the expression: \(x=\frac{-7\pm \sqrt{7^{2}-4\times 36\times 2}}{72}\) - step4: Simplify the expression: \(x=\frac{-7\pm \sqrt{-239}}{72}\) - step5: Simplify the expression: \(x=\frac{-7\pm \sqrt{239}\times i}{72}\) - step6: Separate into possible cases: \(\begin{align}&x=\frac{-7+\sqrt{239}\times i}{72}\\&x=\frac{-7-\sqrt{239}\times i}{72}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\\&x=\frac{-7-\sqrt{239}\times i}{72}\end{align}\) - step8: Simplify the expression: \(\begin{align}&x=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\\&x=-\frac{7}{72}-\frac{\sqrt{239}}{72}i\end{align}\) - step9: Rewrite: \(x_{1}=-\frac{7}{72}-\frac{\sqrt{239}}{72}i,x_{2}=-\frac{7}{72}+\frac{\sqrt{239}}{72}i\) - step10: Remove the complex number(s): \(\textrm{No real solution}\) Solve the equation \( 7x^2+24x=15 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(7x^{2}+24x=15\) - step1: Move the expression to the left side: \(7x^{2}+24x-15=0\) - step2: Solve using the quadratic formula: \(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{2\times 7}\) - step3: Simplify the expression: \(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{14}\) - step4: Simplify the expression: \(x=\frac{-24\pm \sqrt{996}}{14}\) - step5: Simplify the expression: \(x=\frac{-24\pm 2\sqrt{249}}{14}\) - step6: Separate into possible cases: \(\begin{align}&x=\frac{-24+2\sqrt{249}}{14}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\) - step8: Simplify the expression: \(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=-\frac{12+\sqrt{249}}{7}\end{align}\) - step9: Rewrite: \(x_{1}=-\frac{12+\sqrt{249}}{7},x_{2}=\frac{-12+\sqrt{249}}{7}\) Solve the equation \( (x+2)(x-3) = 50 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(\left(x+2\right)\left(x-3\right)=50\) - step1: Expand the expression: \(x^{2}-x-6=50\) - step2: Move the expression to the left side: \(x^{2}-x-56=0\) - step3: Factor the expression: \(\left(x-8\right)\left(x+7\right)=0\) - step4: Separate into possible cases: \(\begin{align}&x-8=0\\&x+7=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=8\\&x=-7\end{align}\) - step6: Rewrite: \(x_{1}=-7,x_{2}=8\) The solutions to the given equations are: 1. \(36x^2+7x=-2\) has no real solution. 2. \(7x^2+24x=15\) has two real solutions: \(x_{1}=-\frac{12+\sqrt{249}}{7}\) and \(x_{2}=\frac{-12+\sqrt{249}}{7}\). 3. \((x+2)(x-3) = 50\) has two real solutions: \(x_{1}=-7\) and \(x_{2}=8\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's rewrite the equations for clarity. The first equation can be simplified to \( 36x^2 + 7x + 2 = 0 \). This showcases a classic quadratic equation format where \( a=36 \), \( b=7 \), and \( c=2 \). Using the quadratic formula - \( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \) - will help solve for \( x \) and uncover fashionably hidden roots! Next, for the second equation, rearranging it gives us \( 7x^2 + 24x - 15 = 0 \). Again, this is a quadratic in standard form waiting to be cracked! By applying the quadratic formula, you’ll be able to unveil those elusive solutions. And for the third comment, the expression seems more like a statement or a hint to factorization—if you break it down, it unravels into \( x^2 - x - 6 = 0 \) which is just ripe for factoring into \( (x + 2)(x - 3) = 0 \). Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad