Question

4) \( 72 \cdot\left(49^{\frac{1}{2} \log _{7} 9-\log _{7} 6}+5^{-\log _{\sqrt{5}} 4}\right) \)

Ask by King Pritchard. in Kazakhstan
Feb 05,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Результат вычисления выражения равен 22.5.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

To evaluate the expression \( 72 \cdot\left(49^{\frac{1}{2} \log _{7} 9-\log _{7} 6}+5^{-\log _{\sqrt{5}} 4}\right) \), we start simplifying the terms inside the parentheses. 1. Simplifying \( 49^{\frac{1}{2} \log_{7} 9 - \log_{7} 6} \): - We know that \( 49 = 7^2 \). Thus, we can rewrite it as: \[ 49^{\frac{1}{2} \log_{7} 9 - \log_{7} 6} = (7^2)^{\frac{1}{2} \log_{7} 9 - \log_{7} 6} \] - Applying the property of exponents, we get: \[ = 7^{2\left(\frac{1}{2} \log_{7} 9 - \log_{7} 6\right)} = 7^{\log_{7} 9 - 2\log_{7} 6} \] - Using the properties of logarithms, this becomes: \[ = 7^{\log_{7}\left(\frac{9}{6^2}\right)} = \frac{9}{6^2} = \frac{9}{36} = \frac{1}{4} \] 2. Simplifying \( 5^{-\log_{\sqrt{5}} 4} \): - We can change the base using the change of base formula: \[ -\log_{\sqrt{5}} 4 = -\frac{\log_{5} 4}{\log_{5} \sqrt{5}} = -\frac{\log_{5} 4}{\frac{1}{2}} = -2\log_{5} 4 \] - Therefore, \[ 5^{-\log_{\sqrt{5}} 4} = 5^{-2\log_{5} 4} = \left(5^{\log_{5} 4}\right)^{-2} = 4^{-2} = \frac{1}{16} \] 3. Now substituting the simplified terms back into the expression: \[ 72 \cdot \left( \frac{1}{4} + \frac{1}{16} \right) \] - To simplify \( \frac{1}{4} + \frac{1}{16} \), we find a common denominator: \[ \frac{1}{4} = \frac{4}{16} \implies \frac{4}{16} + \frac{1}{16} = \frac{5}{16} \] 4. Thus, our expression now reads: \[ 72 \cdot \frac{5}{16} \] - Calculating this gives us: \[ = \frac{72 \cdot 5}{16} = \frac{360}{16} = 22.5 \] Finally, the value of the expression \( 72 \cdot\left(49^{\frac{1}{2} \log _{7} 9-\log _{7} 6}+5^{-\log _{\sqrt{5}} 4}\right) \) is \(\boxed{22.5}\).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy