Given that \( \cos \theta=\frac{8}{17} \cdot \operatorname{col} \) culate \( \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta+\cos \theta} \) \( \frac{\cos \theta}{\sin \theta} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Let's start with the first part of your calculation. Since we know that \( \cos^2 \theta + \sin^2 \theta = 1 \), we can use that to simplify our expression. 1. We know \( \cos \theta = \frac{8}{17} \), so we can find \( \sin \theta \) using the identity: \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{225}{289}. \] Thus, \( \sin \theta = \frac{15}{17} \) (since sine is positive in the first quadrant). 2. Now we can add \( \sin^2 \theta \) and \( \cos^2 \theta \): \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{1}{\sin \theta + \cos \theta}. \] Then we need to calculate \( \sin \theta + \cos \theta \): \[ \sin \theta + \cos \theta = \frac{15}{17} + \frac{8}{17} = \frac{23}{17}. \] Therefore, \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{1}{\frac{23}{17}} = \frac{17}{23}. \] Next, let’s tackle the second part to find \( \frac{\cos \theta}{\sin \theta} \): \[ \frac{\cos \theta}{\sin \theta} = \frac{\frac{8}{17}}{\frac{15}{17}} = \frac{8}{15}. \] In conclusion, we have: 1. \( \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{17}{23} \) 2. \( \frac{\cos \theta}{\sin \theta} = \frac{8}{15} \)