Pregunta
upstudy study bank question image url

Given that \( \cos \theta=\frac{8}{17} \cdot \operatorname{col} \) culate \( \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta+\cos \theta} \) \( \frac{\cos \theta}{\sin \theta} \)

Ask by Stanley Stuart. in Nigeria
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The results are: 1. \( \frac{17}{23} \) 2. \( \frac{8}{15} \)

Solución

To solve the problem, we start with the known condition: 1. \( \cos \theta = \frac{8}{17} \) We need to calculate two expressions: 1. \( \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} \) 2. \( \frac{\cos \theta}{\sin \theta} \) ### Step 1: Calculate \( \sin \theta \) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{8}{17}\right)^2 = 1 \] Calculating \( \left(\frac{8}{17}\right)^2 \): \[ \left(\frac{8}{17}\right)^2 = \frac{64}{289} \] Now substituting back into the identity: \[ \sin^2 \theta + \frac{64}{289} = 1 \] To isolate \( \sin^2 \theta \): \[ \sin^2 \theta = 1 - \frac{64}{289} = \frac{289}{289} - \frac{64}{289} = \frac{225}{289} \] Taking the square root to find \( \sin \theta \): \[ \sin \theta = \sqrt{\frac{225}{289}} = \frac{15}{17} \] ### Step 2: Calculate the first expression Now we can calculate: \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} \] We already know \( \sin^2 \theta + \cos^2 \theta = 1 \), so we need to find \( \sin \theta + \cos \theta \): \[ \sin \theta + \cos \theta = \frac{15}{17} + \frac{8}{17} = \frac{23}{17} \] Now substituting into the expression: \[ \frac{1}{\frac{23}{17}} = \frac{17}{23} \] ### Step 3: Calculate the second expression Now we calculate: \[ \frac{\cos \theta}{\sin \theta} = \frac{\frac{8}{17}}{\frac{15}{17}} = \frac{8}{15} \] ### Final Results Thus, the final results are: 1. \( \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{17}{23} \) 2. \( \frac{\cos \theta}{\sin \theta} = \frac{8}{15} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's start with the first part of your calculation. Since we know that \( \cos^2 \theta + \sin^2 \theta = 1 \), we can use that to simplify our expression. 1. We know \( \cos \theta = \frac{8}{17} \), so we can find \( \sin \theta \) using the identity: \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{225}{289}. \] Thus, \( \sin \theta = \frac{15}{17} \) (since sine is positive in the first quadrant). 2. Now we can add \( \sin^2 \theta \) and \( \cos^2 \theta \): \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{1}{\sin \theta + \cos \theta}. \] Then we need to calculate \( \sin \theta + \cos \theta \): \[ \sin \theta + \cos \theta = \frac{15}{17} + \frac{8}{17} = \frac{23}{17}. \] Therefore, \[ \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{1}{\frac{23}{17}} = \frac{17}{23}. \] Next, let’s tackle the second part to find \( \frac{\cos \theta}{\sin \theta} \): \[ \frac{\cos \theta}{\sin \theta} = \frac{\frac{8}{17}}{\frac{15}{17}} = \frac{8}{15}. \] In conclusion, we have: 1. \( \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta + \cos \theta} = \frac{17}{23} \) 2. \( \frac{\cos \theta}{\sin \theta} = \frac{8}{15} \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad