Question
upstudy study bank question image url

Factorise the following expressions: (1) \( m x+m y+n x+n y \) (3) \( 3 a p-3 b p-3 a q+3 b q \) (5) \( 2 x^{3}-8 x y^{2}+x^{2} y-4 y^{3} \) (7) \( p x^{3}+p+x^{3}+1 \) (9) \( x y+3 a+3 y+a x \) (11) \( a^{2} x+y-x-a^{2} y \)

Ask by Elliott Craig. in South Africa
Feb 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( m x + m y + n x + n y = (m + n)(x + y) \) 2. \( 3 a p - 3 b p - 3 a q + 3 b q = 3(a - b)(p - q) \) 3. \( 2 x^{3} - 8 x y^{2} + x^{2} y - 4 y^{3} = (2x + y)(x + 2y)(x - 2y) \) 4. \( p x^{3} + p + x^{3} + 1 = (x^{2} - x + 1)(x + 1)(p + 1) \) 5. \( x y + 3 a + 3 y + a x = (x + 3)(y + a) \) 6. \( a^{2} x + y - x - a^{2} y = (a + 1)(a - 1)(x - y) \)

Solution

Factor the expression \( m*x+m*y+n*x+n*y \). Factor the expression by following steps: - step0: Factor: \(mx+my+nx+ny\) - step1: Factor the expression: \(m\left(x+y\right)+n\left(x+y\right)\) - step2: Factor the expression: \(\left(m+n\right)\left(x+y\right)\) Factor the expression \( 3*a*p-3*b*p-3*a*q+3*b*q \). Factor the expression by following steps: - step0: Factor: \(3ap-3bp-3aq+3bq\) - step1: Factor the expression: \(3\left(ap-aq-bp+bq\right)\) - step2: Factor the expression: \(3\left(a\left(p-q\right)-b\left(p-q\right)\right)\) - step3: Factor the expression: \(3\left(a-b\right)\left(p-q\right)\) Factor the expression \( 2*x^3-8*x*y^2+x^2*y-4*y^3 \). Factor the expression by following steps: - step0: Factor: \(2x^{3}-8xy^{2}+x^{2}y-4y^{3}\) - step1: Rewrite the expression: \(2x^{3}-8xy^{2}+yx^{2}-4y^{3}\) - step2: Factor the expression: \(2x\left(x^{2}-4y^{2}\right)+y\left(x^{2}-4y^{2}\right)\) - step3: Factor the expression: \(\left(2x+y\right)\left(x^{2}-4y^{2}\right)\) - step4: Factor the expression: \(\left(2x+y\right)\left(x+2y\right)\left(x-2y\right)\) Factor the expression \( p*x^3+p+x^3+1 \). Factor the expression by following steps: - step0: Factor: \(px^{3}+p+x^{3}+1\) - step1: Evaluate: \(x^{3}p+x^{3}+p+1\) - step2: Rewrite the expression: \(x^{3}p+x^{3}+x^{2}p+x^{2}-x^{2}p-x^{2}-xp-x+xp+x+p+1\) - step3: Factor the expression: \(x^{2}\left(xp+x+p+1\right)-x\left(xp+x+p+1\right)+xp+x+p+1\) - step4: Factor the expression: \(\left(x^{2}-x+1\right)\left(xp+x+p+1\right)\) - step5: Factor the expression: \(\left(x^{2}-x+1\right)\left(x+1\right)\left(p+1\right)\) Factor the expression \( x*y+3*a+3*y+a*x \). Factor the expression by following steps: - step0: Factor: \(xy+3a+3y+ax\) - step1: Rewrite the expression: \(xy+xa+3y+3a\) - step2: Factor the expression: \(x\left(y+a\right)+3\left(y+a\right)\) - step3: Factor the expression: \(\left(x+3\right)\left(y+a\right)\) Factor the expression \( a^2*x+y-x-a^2*y \). Factor the expression by following steps: - step0: Factor: \(a^{2}x+y-x-a^{2}y\) - step1: Rewrite the expression: \(a^{2}x-a^{2}y-x+y\) - step2: Factor the expression: \(a^{2}\left(x-y\right)-\left(x-y\right)\) - step3: Factor the expression: \(\left(a^{2}-1\right)\left(x-y\right)\) - step4: Factor the expression: \(\left(a+1\right)\left(a-1\right)\left(x-y\right)\) The factored forms of the given expressions are: 1. \( m x+m y+n x+n y = (m+n)(x+y) \) 2. \( 3 a p-3 b p-3 a q+3 b q = 3(a-b)(p-q) \) 3. \( 2 x^{3}-8 x y^{2}+x^{2} y-4 y^{3} = (2x+y)(x+2y)(x-2y) \) 4. \( p x^{3}+p+x^{3}+1 = (x^{2}-x+1)(x+1)(p+1) \) 5. \( x y+3 a+3 y+a x = (x+3)(y+a) \) 6. \( a^{2} x+y-x-a^{2} y = (a+1)(a-1)(x-y) \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To factorise those expressions, let's break it down step by step! For \( m x+m y+n x+n y \): Group like terms: \( (mx + nx) + (my + ny) = x(m+n) + y(m+n) = (m+n)(x+y) \). For \( 3 a p-3 b p-3 a q+3 b q \): Factor out common factors: \( 3p(a-b) - 3q(a-b) = (a-b)(3p-3q) = 3(a-b)(p-q) \). For \( 2 x^{3}-8 x y^{2}+x^{2} y-4 y^{3} \): Group terms: \( 2x^3 + x^2y - 8xy^2 - 4y^3 = x^2(2x + y) - 4y^2(2x + y) = (2x+y)(x^2-4y^2) = (2x+y)(x-2y)(x+2y) \). For \( p x^{3}+p+x^{3}+1 \): Rearrange: \( (px^3 + p) + (x^3 + 1) \). Factor: \( p(x^3 + 1) + 1(x^3 + 1) = (px^3 + 1)(x^3 + 1) = (p+1)(x^3 + 1) \). For \( x y+3 a+3 y+a x \): Rearranging gives: \( (xy + ax) + (3y + 3a) = x(y + a) + 3(y + a) = (y + a)(x + 3) \). For \( a^{2} x+y-x-a^{2} y \): Reorganizing gives: \( a^2x - x + y - a^2y = x(a^2 - 1) + y(1 - a^2) = (a^2 - 1)(x - y) \). These factorisations can help simplify and solve equations involving these expressions! Have fun exploring their implications in algebra!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy