Answer
1. \( m x + m y + n x + n y = (m + n)(x + y) \)
2. \( 3 a p - 3 b p - 3 a q + 3 b q = 3(a - b)(p - q) \)
3. \( 2 x^{3} - 8 x y^{2} + x^{2} y - 4 y^{3} = (2x + y)(x + 2y)(x - 2y) \)
4. \( p x^{3} + p + x^{3} + 1 = (x^{2} - x + 1)(x + 1)(p + 1) \)
5. \( x y + 3 a + 3 y + a x = (x + 3)(y + a) \)
6. \( a^{2} x + y - x - a^{2} y = (a + 1)(a - 1)(x - y) \)
Solution
Factor the expression \( m*x+m*y+n*x+n*y \).
Factor the expression by following steps:
- step0: Factor:
\(mx+my+nx+ny\)
- step1: Factor the expression:
\(m\left(x+y\right)+n\left(x+y\right)\)
- step2: Factor the expression:
\(\left(m+n\right)\left(x+y\right)\)
Factor the expression \( 3*a*p-3*b*p-3*a*q+3*b*q \).
Factor the expression by following steps:
- step0: Factor:
\(3ap-3bp-3aq+3bq\)
- step1: Factor the expression:
\(3\left(ap-aq-bp+bq\right)\)
- step2: Factor the expression:
\(3\left(a\left(p-q\right)-b\left(p-q\right)\right)\)
- step3: Factor the expression:
\(3\left(a-b\right)\left(p-q\right)\)
Factor the expression \( 2*x^3-8*x*y^2+x^2*y-4*y^3 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{3}-8xy^{2}+x^{2}y-4y^{3}\)
- step1: Rewrite the expression:
\(2x^{3}-8xy^{2}+yx^{2}-4y^{3}\)
- step2: Factor the expression:
\(2x\left(x^{2}-4y^{2}\right)+y\left(x^{2}-4y^{2}\right)\)
- step3: Factor the expression:
\(\left(2x+y\right)\left(x^{2}-4y^{2}\right)\)
- step4: Factor the expression:
\(\left(2x+y\right)\left(x+2y\right)\left(x-2y\right)\)
Factor the expression \( p*x^3+p+x^3+1 \).
Factor the expression by following steps:
- step0: Factor:
\(px^{3}+p+x^{3}+1\)
- step1: Evaluate:
\(x^{3}p+x^{3}+p+1\)
- step2: Rewrite the expression:
\(x^{3}p+x^{3}+x^{2}p+x^{2}-x^{2}p-x^{2}-xp-x+xp+x+p+1\)
- step3: Factor the expression:
\(x^{2}\left(xp+x+p+1\right)-x\left(xp+x+p+1\right)+xp+x+p+1\)
- step4: Factor the expression:
\(\left(x^{2}-x+1\right)\left(xp+x+p+1\right)\)
- step5: Factor the expression:
\(\left(x^{2}-x+1\right)\left(x+1\right)\left(p+1\right)\)
Factor the expression \( x*y+3*a+3*y+a*x \).
Factor the expression by following steps:
- step0: Factor:
\(xy+3a+3y+ax\)
- step1: Rewrite the expression:
\(xy+xa+3y+3a\)
- step2: Factor the expression:
\(x\left(y+a\right)+3\left(y+a\right)\)
- step3: Factor the expression:
\(\left(x+3\right)\left(y+a\right)\)
Factor the expression \( a^2*x+y-x-a^2*y \).
Factor the expression by following steps:
- step0: Factor:
\(a^{2}x+y-x-a^{2}y\)
- step1: Rewrite the expression:
\(a^{2}x-a^{2}y-x+y\)
- step2: Factor the expression:
\(a^{2}\left(x-y\right)-\left(x-y\right)\)
- step3: Factor the expression:
\(\left(a^{2}-1\right)\left(x-y\right)\)
- step4: Factor the expression:
\(\left(a+1\right)\left(a-1\right)\left(x-y\right)\)
The factored forms of the given expressions are:
1. \( m x+m y+n x+n y = (m+n)(x+y) \)
2. \( 3 a p-3 b p-3 a q+3 b q = 3(a-b)(p-q) \)
3. \( 2 x^{3}-8 x y^{2}+x^{2} y-4 y^{3} = (2x+y)(x+2y)(x-2y) \)
4. \( p x^{3}+p+x^{3}+1 = (x^{2}-x+1)(x+1)(p+1) \)
5. \( x y+3 a+3 y+a x = (x+3)(y+a) \)
6. \( a^{2} x+y-x-a^{2} y = (a+1)(a-1)(x-y) \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution