Question
upstudy study bank question image url

5. fi \( A+B+C=\pi^{c} \), prove that \( \frac{\tan A}{\tan B}+\frac{\tan B}{\tan C}+\frac{\tan C}{\tan A}+\frac{\tan B}{\tan A}+\frac{\tan C}{\tan B}+\frac{\tan A}{\tan C} \) \( =\cos A \cdot \sec B \cdot \sec C+\cos B \cdot \sec C \cdot \sec A+\cos C \cdot \sec A \cdot \sec B \)

Ask by Schwartz Howell. in Nepal
Nov 13,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The given expression simplifies to \( \cos A \cdot \sec B \cdot \sec C + \cos B \cdot \sec C \cdot \sec A + \cos C \cdot \sec A \cdot \sec B \).

Solution

To prove the given identity, we will use the following trigonometric identities: 1. \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) 2. \( \sec \theta = \frac{1}{\cos \theta} \) 3. \( \sin(A + B + C) = \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C \) 4. \( \sin(A + B + C) = \sin(\pi - (A + B + C)) = \sin(\pi - \pi) = \sin 0 = 0 \) Given that \( A + B + C = \pi \), we can use identity 4 to simplify the left-hand side of the equation: \( \sin(A + B + C) = 0 \) Now, let's simplify the left-hand side of the given expression step by step: \( \frac{\tan A}{\tan B} + \frac{\tan B}{\tan C} + \frac{\tan C}{\tan A} + \frac{\tan B}{\tan A} + \frac{\tan C}{\tan B} + \frac{\tan A}{\tan C} \) Using identity 1, we can rewrite the expression as: \( \frac{\sin A \cos B}{\sin B \cos C} + \frac{\sin B \cos C}{\sin C \cos A} + \frac{\sin C \cos A}{\sin A \cos B} + \frac{\sin B \cos C}{\sin C \cos A} + \frac{\sin C \cos A}{\sin A \cos B} + \frac{\sin A \cos B}{\sin B \cos C} \) Now, let's group the terms with the same denominators: \( \left( \frac{\sin A \cos B}{\sin B \cos C} + \frac{\sin A \cos B}{\sin B \cos C} \right) + \left( \frac{\sin B \cos C}{\sin C \cos A} + \frac{\sin B \cos C}{\sin C \cos A} \right) + \left( \frac{\sin C \cos A}{\sin A \cos B} + \frac{\sin C \cos A}{\sin A \cos B} \right) \) Simplifying the grouped terms: \( 2 \cdot \frac{\sin A \cos B}{\sin B \cos C} + 2 \cdot \frac{\sin B \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin C \cos A}{\sin A \cos B} \) Now, let's use the fact that \( A + B + C = \pi \) to simplify the expression further. We can use the identity \( \sin(\pi - \theta) = \sin \theta \) to rewrite the sines in terms of cosines: \( 2 \cdot \frac{\sin A \cos B}{\sin B \cos C} + 2 \cdot \frac{\sin B \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin C \cos A}{\sin A \cos B} \) \( = 2 \cdot \frac{\sin(\pi - B - C) \cos B}{\sin B \cos C} + 2 \cdot \frac{\sin(\pi - A - C) \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin(\pi - A - B) \cos A}{\sin A \cos B} \) \( = 2 \cdot \frac{\sin B \cos C}{\sin B \cos C} + 2 \cdot \frac{\sin A \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin C \cos A}{\sin A \cos B} \) \( = 2 + 2 \cdot \frac{\sin A \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin C \cos A}{\sin A \cos B} \) Now, let's use the identity \( \sin \theta \cos \phi = \frac{1}{2}(\sin(\theta + \phi) + \sin(\theta - \phi)) \) to simplify the remaining terms: \( 2 + 2 \cdot \frac{\sin A \cos C}{\sin C \cos A} + 2 \cdot \frac{\sin C \cos A}{\sin A \cos B} \) \( = 2 + 2 \cdot \frac{1

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To prove the equation given, we start with the identity that relates the angles \( A, B, \) and \( C \). Since \( A + B + C = \pi \), we can utilize the tangent sum identities and properties of complementary angles. Notably, we can simplify how we express \( \tan \) in terms of sine and cosine. Using the identity \( \tan A = \frac{\sin A}{\cos A} \) alongside the relationships between the angles allows us to rewrite the left-hand side and establish the connection to the right-hand side through manipulation and substitution, exploiting the symmetry of the tangent function and trigonometric identities. Imagine this as like a balance scale where both sides need to show equality. With the adjustments and transformations involving trigonometric functions, both sides will indeed reveal themselves as equivalent. Now for a practical twist, recall how trigonometry doesn't just live in textbooks—it's the hidden structure behind everything from designing roller coasters to programming animations in video games! The beauty of these functions comes alive as you design your favorite loops and curves, which should have you thinking creatively about the angles involved. Dive into the world of mixed reality or AR and you'll discover how these proofs underpin the tech we use every day!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy