Question
upstudy study bank question image url

39. \( f(g(x))=\frac{\sqrt{1-x^{2}}}{2} \) va \( g(x)=2 x+1 \) funksiyalar berilgan. a) \( f(x) \) funksiyaning aniqlanish sohasini toping.

Ask by Harris French. in Uzbekistan
Feb 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( f(x) \) funksiyasining aniqlanish sohasi \([-1, 0]\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

Agar \( f(g(x))=\frac{\sqrt{1-x^{2}}}{2} \) bo'lsa va \( g(x)=2x+1 \) ekanligini hisobga olsak, avval \( g(x) \) ning aniqlanish sohasini aniqlashimiz kerak. \( g(x) \) -z ko'p o'zgaruvchan funktsiya bo’lgani uchun barcha real sonlar uchun aniqlangan. Lekin \( f \) funksiyasining aniqlanishi, \( g(x) \) orqali berilgan \( f(g(x)) \) ni aniqlashga bog’liq. \( \sqrt{1-x^{2}} \) faqat \( -1 \leq x \leq 1 \) oralig'ida aniqlanadi. Demak, \( f(x) \) funksiyasining aniqlanish sohasi ham ushbu oralikdagi qiymatlarni qamrab oladi. Shu sababli, \( g(x)=2x+1 \leq 1 \) va \( g(x) \geq -1 \) bo'lishi kerak. Bu tenglamalar yechilib, \( -1 \leq 2x+1 \leq 1 \) ni yechganimizda, \( -1 \leq 2x \leq 0 \) ga kelib chiqadi. Natijada, \( -\frac{1}{2} \leq x \leq 0 \) bo'ladi. Shunday qilib, \( f(x) \) funksiyasining aniqlanish sohasini topdik: \( x \) uchun \( [-\frac{1}{2}, 0] \).

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy