39. \( f(g(x))=\frac{\sqrt{1-x^{2}}}{2} \) va \( g(x)=2 x+1 \) funksiyalar berilgan. a) \( f(x) \) funksiyaning aniqlanish sohasini toping.
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Bonus Knowledge
Agar \( f(g(x))=\frac{\sqrt{1-x^{2}}}{2} \) bo'lsa va \( g(x)=2x+1 \) ekanligini hisobga olsak, avval \( g(x) \) ning aniqlanish sohasini aniqlashimiz kerak. \( g(x) \) -z ko'p o'zgaruvchan funktsiya bo’lgani uchun barcha real sonlar uchun aniqlangan. Lekin \( f \) funksiyasining aniqlanishi, \( g(x) \) orqali berilgan \( f(g(x)) \) ni aniqlashga bog’liq. \( \sqrt{1-x^{2}} \) faqat \( -1 \leq x \leq 1 \) oralig'ida aniqlanadi. Demak, \( f(x) \) funksiyasining aniqlanish sohasi ham ushbu oralikdagi qiymatlarni qamrab oladi. Shu sababli, \( g(x)=2x+1 \leq 1 \) va \( g(x) \geq -1 \) bo'lishi kerak. Bu tenglamalar yechilib, \( -1 \leq 2x+1 \leq 1 \) ni yechganimizda, \( -1 \leq 2x \leq 0 \) ga kelib chiqadi. Natijada, \( -\frac{1}{2} \leq x \leq 0 \) bo'ladi. Shunday qilib, \( f(x) \) funksiyasining aniqlanish sohasini topdik: \( x \) uchun \( [-\frac{1}{2}, 0] \).