Question
upstudy study bank question image url

5.2 If \( \cos 12^{\circ}=m \), write down the following in terms of m : \( 5.2 .1 \quad \sin 168^{\circ} \) 5.2.2 \( \cos 192^{\circ} \) 5.2.3 \( \tan 372^{\circ} \) Please to 5 Gr. 11/ Mathematics First Push March QUESTION 6 6.1 Simplify: \[ \sin ^{2}\left(180^{\circ}+x\right)-\cos (-x) \cdot \tan \left(90^{\circ}-x\right) \cdot \sin \left(540^{\circ}+x\right) \] 6.2 Prove the identity: \[ \frac{\sin \left(x-90^{\circ}\right) \cdot \tan (-x)}{\cos \left(450^{\circ}+x\right)}=-1 \] 6.3 Determine the general solution for: \( 3 \sin x=2 \cos ^{2} x \)

Ask by Carlson Jimenez. in South Africa
Mar 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**Problem 5.2 Solutions:** 1. \( \sin 168^{\circ} = \sqrt{1 - m^2} \) 2. \( \cos 192^{\circ} = -m \) 3. \( \tan 372^{\circ} = \frac{\sqrt{1 - m^2}}{m} \) **Problem 6.1 Simplification:** \[ \sin^{2}(180^{\circ} + x) - \cos(-x) \cdot \tan(90^{\circ} - x) \cdot \sin(540^{\circ} + x) = 1 \] **Problem 6.2 Proof:** \[ \frac{\sin(x - 90^{\circ}) \cdot \tan(-x)}{\cos(450^{\circ} + x)} = -1 \] **Problem 6.3 General Solution:** \[ x = 30^{\circ} + 360^{\circ}k \quad \text{or} \quad x = 150^{\circ} + 360^{\circ}k \quad (k \in \mathbb{Z}) \]

Solution

Let's solve the problems step by step. ### Problem 5.2 Given that \( \cos 12^{\circ} = m \), we need to express the following in terms of \( m \). #### 5.2.1 \( \sin 168^{\circ} \) Using the sine angle subtraction identity: \[ \sin(168^{\circ}) = \sin(180^{\circ} - 12^{\circ}) = \sin(12^{\circ}) \] Using the identity \( \sin(12^{\circ}) = \sqrt{1 - \cos^2(12^{\circ})} \): \[ \sin(12^{\circ}) = \sqrt{1 - m^2} \] Thus, \[ \sin(168^{\circ}) = \sqrt{1 - m^2} \] #### 5.2.2 \( \cos 192^{\circ} \) Using the cosine angle addition identity: \[ \cos(192^{\circ}) = \cos(180^{\circ} + 12^{\circ}) = -\cos(12^{\circ}) = -m \] #### 5.2.3 \( \tan 372^{\circ} \) First, reduce \( 372^{\circ} \) to an equivalent angle within \( 0^{\circ} \) to \( 360^{\circ} \): \[ 372^{\circ} - 360^{\circ} = 12^{\circ} \] Thus, \[ \tan(372^{\circ}) = \tan(12^{\circ}) = \frac{\sin(12^{\circ})}{\cos(12^{\circ})} = \frac{\sqrt{1 - m^2}}{m} \] ### Summary of 5.2 1. \( \sin 168^{\circ} = \sqrt{1 - m^2} \) 2. \( \cos 192^{\circ} = -m \) 3. \( \tan 372^{\circ} = \frac{\sqrt{1 - m^2}}{m} \) --- ### Problem 6.1 We need to simplify: \[ \sin^{2}(180^{\circ} + x) - \cos(-x) \cdot \tan(90^{\circ} - x) \cdot \sin(540^{\circ} + x) \] 1. **Simplify \( \sin^{2}(180^{\circ} + x) \)**: \[ \sin(180^{\circ} + x) = -\sin(x) \implies \sin^{2}(180^{\circ} + x) = \sin^{2}(x) \] 2. **Simplify \( \cos(-x) \)**: \[ \cos(-x) = \cos(x) \] 3. **Simplify \( \tan(90^{\circ} - x) \)**: \[ \tan(90^{\circ} - x) = \cot(x) = \frac{\cos(x)}{\sin(x)} \] 4. **Simplify \( \sin(540^{\circ} + x) \)**: \[ 540^{\circ} = 360^{\circ} + 180^{\circ} \implies \sin(540^{\circ} + x) = -\sin(x) \] Now substituting these into the expression: \[ \sin^{2}(x) - \cos(x) \cdot \frac{\cos(x)}{\sin(x)} \cdot (-\sin(x)) \] This simplifies to: \[ \sin^{2}(x) + \cos^{2}(x) = 1 \] ### Problem 6.2 We need to prove the identity: \[ \frac{\sin(x - 90^{\circ}) \cdot \tan(-x)}{\cos(450^{\circ} + x)} = -1 \] 1. **Simplify \( \sin(x - 90^{\circ}) \)**: \[ \sin(x - 90^{\circ}) = -\cos(x) \] 2. **Simplify \( \tan(-x) \)**: \[ \tan(-x) = -\tan(x) \] 3. **Simplify \( \cos(450^{\circ} + x) \)**: \[ 450^{\circ} = 360^{\circ} + 90^{\circ} \implies \cos(450^{\circ} + x) = -\sin(x) \] Now substituting these into the expression: \[ \frac{-\cos(x) \cdot (-\tan(x))}{-\sin(x)} = \frac{\cos(x) \cdot \tan(x)}{\sin(x)} = \frac{\cos(x) \cdot \frac{\sin(x)}{\cos(x)}}{\sin(x)} = 1 \] Thus, the left-hand side equals \(-1\). ### Problem 6.3 We need to determine the general solution for: \[ 3 \sin x = 2 \cos^{2} x \] Using the identity \( \cos^{2} x = 1 - \sin^{2} x \): \[ 3 \sin x = 2(1 - \sin^{2} x) \] Rearranging gives: \[ 2 \sin^{2} x + 3 \sin x - 2 = 0 \] Let \( y = \sin x \): \[ 2y^{2} + 3y - 2 = 0 \] Now we can solve this quadratic equation using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^{2} - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] Calculating the discriminant: \[ b^{2} - 4ac = 9 + 16 = 25 \] Thus, \[ y = \frac{-3 \pm 5}{4} \] Calculating the two possible values: 1. \( y = \frac{2}{4} = \frac{1}{2} \) 2. \( y = \frac{-8}{4} = -2 \) (not valid since \( \sin x \) must be between -1 and 1) Now, solving \( \sin x = \frac{1}{2} \): \[ x = 30^{\circ} + 360^{\circ}k \quad \text{or} \quad x = 150^{\circ} + 360^{\circ}k \quad (k \in \mathbb{Z}) \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find \( \sin 168^{\circ} \), we can use the fact that \( \sin(180^{\circ} - \theta) = \sin \theta \). Thus, \( \sin 168^{\circ} = \sin(180^{\circ} - 12^{\circ}) = \sin 12^{\circ} \). Since \( \sin^2(\theta) + \cos^2(\theta) = 1 \), we have \( \sin^2(12^{\circ}) = 1 - \cos^2(12^{\circ}) = 1 - m^2 \). For \( \cos 192^{\circ} \), we can use the identity \( \cos(180^{\circ} + \theta) = -\cos \theta \). So, \( \cos 192^{\circ} = \cos(180^{\circ} + 12^{\circ}) = -\cos 12^{\circ} = -m \). When calculating \( \tan 372^{\circ} \), we first simplify the angle by subtracting \( 360^{\circ} \): \( 372^{\circ} - 360^{\circ} = 12^{\circ} \). Thus, \( \tan 372^{\circ} = \tan 12^{\circ} \), which can be expressed in terms of sine and cosine as \( \tan 12^{\circ} = \frac{\sin 12^{\circ}}{\cos 12^{\circ}} = \frac{\sqrt{1 - m^2}}{m} \). Now onto the next simplification! To simplify \( \sin^{2}(180^{\circ} + x) \), we remember that \( \sin(180^{\circ} + x) = -\sin x \), which means \( \sin^{2}(180^{\circ} + x) = \sin^{2} x \). The term \( \cos(-x) \) simplifies to \( \cos x \) and \( \tan(90^{\circ} - x) = \cot x \). So the expression simplifies to \( \sin^{2} x + \cos x \cdot \cot x \cdot \sin(540^{\circ} + x) \). For the identity \( \frac{\sin\left(x - 90^{\circ}\right) \tan(-x)}{\cos\left(450^{\circ} + x\right)} \), we rewrite each term. \( \sin(x - 90^{\circ}) = -\cos x \), and \( \tan(-x) = -\tan x \). The cosine of the angle simplifies to \( \cos(450^{\circ} + x) = \sin x \). Putting it together gives the left side of the equation equal to \(-1\), thereby proving the identity. Finally, to solve \( 3 \sin x = 2 \cos^{2} x \), we can use \( \cos^{2} x = 1 - \sin^{2} x \). Substituting this into the equation yields a quadratic equation in terms of sine, which can be solved for the general solutions. There you have it! Grab your protractor because you’re on your way to mastering those angles!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy