Question
\( \begin{array}{l} \text { Evaluate the function at the indicated values. (If an answer is undefined, enter UNDEFINED.) }\\ \begin{aligned} k(x) & =-x^{2}-5 x+6 ; \quad k(0), k(5), k(-5), k(\sqrt{5}), k(a+5), k(-x), k\left(x^{2}\right) \\ k(0) & =6 \\ k(5) & =-44 \\ k(-5) & =6 \\ k(\sqrt{5}) & =1-5 \sqrt{5} \\ k(a+5) & =-a^{2}-15 a-44 \\ k(-x) & =\square \\ k\left(x^{2}\right) & =\square \end{aligned} \end{array} \)
Ask by Franklin Potter. in the United States
Feb 14,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
k(–x) = –x² + 5x + 6
k(x²) = –x⁴ – 5x² + 6
Solution
We are given the function k(x) = –x² – 5x + 6. To find k(–x) and k(x²):
1. For k(–x):
Substitute –x into the function:
k(–x) = –(–x)² – 5(–x) + 6.
Since (–x)² = x², this becomes:
k(–x) = –x² + 5x + 6.
2. For k(x²):
Substitute x² into the function:
k(x²) = –(x²)² – 5(x²) + 6.
Since (x²)² = x⁴, this becomes:
k(x²) = –x⁴ – 5x² + 6.
Thus, the answers are:
k(–x) = –x² + 5x + 6 and k(x²) = –x⁴ – 5x² + 6.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Beyond the Answer
To evaluate \( k(-x) \), substitute \(-x\) into the function: \[ k(-x) = -(-x)^2 - 5(-x) + 6 = -x^2 + 5x + 6. \] Now, for \( k(x^2) \): \[ k(x^2) = - (x^2)^2 - 5(x^2) + 6 = -x^4 - 5x^2 + 6. \] Thus, we have: \[ k(-x) = -x^2 + 5x + 6 \] \[ k(x^2) = -x^4 - 5x^2 + 6 \]