Question
upstudy study bank question image url

2) \( \frac{6}{5} x-x \leqslant 2 x+\frac{1}{5} \)

Ask by Cross Mills. in Argentina
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la desigualdad \( \frac{6}{5} x - x \leqslant 2 x + \frac{1}{5} \) es \( x \geqslant -\frac{1}{9} \).

Solution

Para resolver la desigualdad \( \frac{6}{5} x - x \leqslant 2 x + \frac{1}{5} \), seguiremos los siguientes pasos: 1. **Simplificar la expresión**: Primero, simplificamos el lado izquierdo de la desigualdad. \[ \frac{6}{5} x - x = \frac{6}{5} x - \frac{5}{5} x = \frac{1}{5} x \] Entonces, la desigualdad se convierte en: \[ \frac{1}{5} x \leqslant 2 x + \frac{1}{5} \] 2. **Reorganizar la desigualdad**: Ahora, movemos todos los términos que contienen \( x \) a un lado y los términos constantes al otro lado. \[ \frac{1}{5} x - 2 x \leqslant \frac{1}{5} \] Para simplificar \( \frac{1}{5} x - 2 x \), convertimos \( 2 x \) a fracciones con el mismo denominador: \[ 2 x = \frac{10}{5} x \] Entonces, la desigualdad se convierte en: \[ \frac{1}{5} x - \frac{10}{5} x \leqslant \frac{1}{5} \] Esto se simplifica a: \[ -\frac{9}{5} x \leqslant \frac{1}{5} \] 3. **Multiplicar por -5/9**: Para despejar \( x \), multiplicamos ambos lados de la desigualdad por \( -\frac{5}{9} \). Recuerda que al multiplicar o dividir por un número negativo, debemos invertir la desigualdad. \[ x \geqslant -\frac{5}{9} \cdot \frac{1}{5} \] Simplificando el lado derecho: \[ x \geqslant -\frac{1}{9} \] 4. **Conclusión**: La solución de la desigualdad es: \[ x \geqslant -\frac{1}{9} \] Esto significa que cualquier valor de \( x \) que sea mayor o igual a \( -\frac{1}{9} \) satisface la desigualdad original.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the inequality \( \frac{6}{5} x - x \leqslant 2 x + \frac{1}{5} \), first combine like terms on the left side. This simplifies to \( \frac{1}{5} x \leqslant 2 x + \frac{1}{5} \). Next, subtract \( 2x \) from both sides to get \( \frac{1}{5} x - 2x \leqslant \frac{1}{5} \). Combine terms to simplify: \( \frac{1}{5} x - \frac{10}{5} x = -\frac{9}{5} x \). Now the inequality becomes \( -\frac{9}{5} x \leqslant \frac{1}{5} \). Multiplying both sides by -5/9 (remember to reverse the inequality sign) yields \( x \geqslant -\frac{1}{9} \). In interval notation, the solution is \( x \in \left[-\frac{1}{9}, \infty\right) \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy