Question
upstudy study bank question image url

6 두 이차방정식 \( 3 x^{2}+2=5 x, x(x+8)=9 \) 의 공통인 근은? \( \begin{array}{lll}\text { (1) } x=\frac{2}{3} & \text { (2) } x=1 & \text { (3) } x=\frac{3}{2} \\ \text { (4) } x=3 & \text { (5) } x=9 & \end{array} \)

Ask by Bright Gonzalez. in South Korea
Jan 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

두 방정식의 공통된 해는 \( x = 1 \)입니다.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

두 이차방정식을 풀어 공통인근을 찾아보자! 첫 번째 방정식 \( 3x^{2} - 5x + 2 = 0 \)를 풀면, 판별식 \( D = b^{2} - 4ac \)을 사용해서 \( D = (-5)^{2} - 4 \cdot 3 \cdot 2 = 25 - 24 = 1 \)로, 근은 \( x = \frac{5 \pm 1}{2 \cdot 3} \)로 나타내어 \( x = 1 \)과 \( x = \frac{2}{3} \)를 얻는다. 두 번째 방정식 \( x^{2} + 8x - 9 = 0 \)의 경우 판별식은 \( D = 8^{2} + 4 \cdot 9 = 64 + 36 = 100 \)로, 근은 \( x = \frac{-8 \pm 10}{2} \)로 나타내어 \( x = 1 \)과 \( x = -9 \)를 얻는다. 따라서 공통인근은 \( x = 1 \)이 된다. 정답은 (2) \( x = 1 \)이다!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy