Question
upstudy study bank question image url

1. \( \frac{\cos \left(180^{\circ}-x\right) \sin \left(x-90^{\circ}\right)-1}{\tan ^{2}\left(540^{\circ}+x\right) \sin \left(90^{\circ}+x\right) \cos (-x)} \) 2. \( \left[\sin (-\theta)+\cos \left(360^{\circ}+\theta\right)\right]\left[\cos \left(\theta-90^{\circ}\right)+\cos \left(180^{\circ}+\theta\right.\right. \) 3. \( \cos ^{2} \theta\left(1+\tan ^{2} \theta\right) \) 4. \( \frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta} \)

Ask by Allan Davison. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. The first expression is too complex to simplify directly. 2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\). 3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\). 4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\).

Solution

Simplify the expression by following steps: - step0: Solution: \(\cos\left(\theta ^{2}\right)\left(1+\tan\left(\theta ^{2}\right)\right)\) - step1: Transform the expression: \(\cos\left(\theta ^{2}\right)\times \frac{\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)}{\cos\left(\theta ^{2}\right)}\) - step2: Reduce the fraction: \(1\times \left(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\right)\) - step3: Multiply the terms: \(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\) Calculate or simplify the expression \( (1-\cos(\theta)^2)/(1-\sin(\theta)^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(1-\cos\left(\theta ^{2}\right)\right)}{\left(1-\sin\left(\theta ^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{1-\cos\left(\theta ^{2}\right)}{1-\sin\left(\theta ^{2}\right)}\) Calculate or simplify the expression \( (\sin(-\theta)+\cos(360+\theta))*(\cos(\theta-90)+\cos(180+\theta)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\sin\left(-\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step1: Transform the expression: \(\left(-\sin\left(\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step2: Rewrite the expression: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step3: Transform the expression: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(-135\right)\right)\) - step4: Calculate: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(135\right)\right)\) - step5: Multiply the terms: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\times 2\cos\left(135\right)\cos\left(\theta +45\right)\) - step6: Simplify: \(2\cos\left(135\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\) - step7: Simplify: \(2\cos\left(135\right)\cos\left(\theta +45\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\) - step8: Multiply the terms: \(\left(-2\sin\left(\theta \right)+2\cos\left(\theta +360\right)\right)\cos\left(135\right)\cos\left(\theta +45\right)\) - step9: Multiply the terms: \(\left(-2\cos\left(135\right)\sin\left(\theta \right)+2\cos\left(135\right)\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\) Let's break down the problems step by step and summarize the results. ### 1. Expression: \[ \frac{\cos \left(180^{\circ}-x\right) \sin \left(x-90^{\circ}\right)-1}{\tan ^{2}\left(540^{\circ}+x\right) \sin \left(90^{\circ}+x\right) \cos (-x)} \] **Result:** The calculation timed out, indicating that it may be too complex to simplify directly. We can analyze it further if needed. ### 2. Expression: \[ \left[\sin (-\theta)+\cos \left(360^{\circ}+\theta\right)\right]\left[\cos \left(\theta-90^{\circ}\right)+\cos \left(180^{\circ}+\theta\right)\right] \] **Simplified Result:** \[ (-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45) \] ### 3. Expression: \[ \cos ^{2} \theta\left(1+\tan ^{2} \theta\right) \] **Simplified Result:** \[ \cos(\theta ^{2})+\sin(\theta ^{2}) \] ### 4. Expression: \[ \frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta} \] **Simplified Result:** \[ \frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})} \] ### Summary of Results: 1. The first expression requires further analysis due to timeout. 2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\). 3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\). 4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\). If you need further assistance with the first expression or any other part, please let me know!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that trigonometric identities have been used to solve real-world problems related to architecture and engineering for centuries? Ancient civilizations, including the Greeks and Egyptians, utilized angle measurements and trigonometric principles to design their iconic structures. This mathematical toolkit helps architects ensure their designs are stable and aesthetically pleasing, weaving geometry and algebra into the fabric of humanity’s grand designs! If you find yourself grappling with trigonometric expressions, one common pitfall is overlooking fundamental identities. Remember that \(\sin(90^\circ - x) = \cos(x)\) and \(\cos(90^\circ - x) = \sin(x)\). When simplifying expressions, it’s often helpful to rewrite terms in a more familiar format. This allows you to harness these relationships effectively and avoid confusion — your future (and your calculations) will thank you!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy