Responder
1. The first expression is too complex to simplify directly.
2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\).
3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\).
4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\).
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\cos\left(\theta ^{2}\right)\left(1+\tan\left(\theta ^{2}\right)\right)\)
- step1: Transform the expression:
\(\cos\left(\theta ^{2}\right)\times \frac{\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)}{\cos\left(\theta ^{2}\right)}\)
- step2: Reduce the fraction:
\(1\times \left(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\right)\)
- step3: Multiply the terms:
\(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\)
Calculate or simplify the expression \( (1-\cos(\theta)^2)/(1-\sin(\theta)^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(1-\cos\left(\theta ^{2}\right)\right)}{\left(1-\sin\left(\theta ^{2}\right)\right)}\)
- step1: Remove the parentheses:
\(\frac{1-\cos\left(\theta ^{2}\right)}{1-\sin\left(\theta ^{2}\right)}\)
Calculate or simplify the expression \( (\sin(-\theta)+\cos(360+\theta))*(\cos(\theta-90)+\cos(180+\theta)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\sin\left(-\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\)
- step1: Transform the expression:
\(\left(-\sin\left(\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\)
- step2: Rewrite the expression:
\(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\)
- step3: Transform the expression:
\(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(-135\right)\right)\)
- step4: Calculate:
\(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(135\right)\right)\)
- step5: Multiply the terms:
\(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\times 2\cos\left(135\right)\cos\left(\theta +45\right)\)
- step6: Simplify:
\(2\cos\left(135\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\)
- step7: Simplify:
\(2\cos\left(135\right)\cos\left(\theta +45\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\)
- step8: Multiply the terms:
\(\left(-2\sin\left(\theta \right)+2\cos\left(\theta +360\right)\right)\cos\left(135\right)\cos\left(\theta +45\right)\)
- step9: Multiply the terms:
\(\left(-2\cos\left(135\right)\sin\left(\theta \right)+2\cos\left(135\right)\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\)
Let's break down the problems step by step and summarize the results.
### 1. Expression:
\[
\frac{\cos \left(180^{\circ}-x\right) \sin \left(x-90^{\circ}\right)-1}{\tan ^{2}\left(540^{\circ}+x\right) \sin \left(90^{\circ}+x\right) \cos (-x)}
\]
**Result:** The calculation timed out, indicating that it may be too complex to simplify directly. We can analyze it further if needed.
### 2. Expression:
\[
\left[\sin (-\theta)+\cos \left(360^{\circ}+\theta\right)\right]\left[\cos \left(\theta-90^{\circ}\right)+\cos \left(180^{\circ}+\theta\right)\right]
\]
**Simplified Result:**
\[
(-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)
\]
### 3. Expression:
\[
\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)
\]
**Simplified Result:**
\[
\cos(\theta ^{2})+\sin(\theta ^{2})
\]
### 4. Expression:
\[
\frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta}
\]
**Simplified Result:**
\[
\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}
\]
### Summary of Results:
1. The first expression requires further analysis due to timeout.
2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\).
3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\).
4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\).
If you need further assistance with the first expression or any other part, please let me know!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución