Pregunta
upstudy study bank question image url

1. \( \frac{\cos \left(180^{\circ}-x\right) \sin \left(x-90^{\circ}\right)-1}{\tan ^{2}\left(540^{\circ}+x\right) \sin \left(90^{\circ}+x\right) \cos (-x)} \) 2. \( \left[\sin (-\theta)+\cos \left(360^{\circ}+\theta\right)\right]\left[\cos \left(\theta-90^{\circ}\right)+\cos \left(180^{\circ}+\theta\right.\right. \) 3. \( \cos ^{2} \theta\left(1+\tan ^{2} \theta\right) \) 4. \( \frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta} \)

Ask by Allan Davison. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. The first expression is too complex to simplify directly. 2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\). 3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\). 4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\).

Solución

Simplify the expression by following steps: - step0: Solution: \(\cos\left(\theta ^{2}\right)\left(1+\tan\left(\theta ^{2}\right)\right)\) - step1: Transform the expression: \(\cos\left(\theta ^{2}\right)\times \frac{\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)}{\cos\left(\theta ^{2}\right)}\) - step2: Reduce the fraction: \(1\times \left(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\right)\) - step3: Multiply the terms: \(\cos\left(\theta ^{2}\right)+\sin\left(\theta ^{2}\right)\) Calculate or simplify the expression \( (1-\cos(\theta)^2)/(1-\sin(\theta)^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(1-\cos\left(\theta ^{2}\right)\right)}{\left(1-\sin\left(\theta ^{2}\right)\right)}\) - step1: Remove the parentheses: \(\frac{1-\cos\left(\theta ^{2}\right)}{1-\sin\left(\theta ^{2}\right)}\) Calculate or simplify the expression \( (\sin(-\theta)+\cos(360+\theta))*(\cos(\theta-90)+\cos(180+\theta)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\sin\left(-\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step1: Transform the expression: \(\left(-\sin\left(\theta \right)+\cos\left(360+\theta \right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step2: Rewrite the expression: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(\cos\left(\theta -90\right)+\cos\left(180+\theta \right)\right)\) - step3: Transform the expression: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(-135\right)\right)\) - step4: Calculate: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\left(2\cos\left(\theta +45\right)\cos\left(135\right)\right)\) - step5: Multiply the terms: \(\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\times 2\cos\left(135\right)\cos\left(\theta +45\right)\) - step6: Simplify: \(2\cos\left(135\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\) - step7: Simplify: \(2\cos\left(135\right)\cos\left(\theta +45\right)\left(-\sin\left(\theta \right)+\cos\left(\theta +360\right)\right)\) - step8: Multiply the terms: \(\left(-2\sin\left(\theta \right)+2\cos\left(\theta +360\right)\right)\cos\left(135\right)\cos\left(\theta +45\right)\) - step9: Multiply the terms: \(\left(-2\cos\left(135\right)\sin\left(\theta \right)+2\cos\left(135\right)\cos\left(\theta +360\right)\right)\cos\left(\theta +45\right)\) Let's break down the problems step by step and summarize the results. ### 1. Expression: \[ \frac{\cos \left(180^{\circ}-x\right) \sin \left(x-90^{\circ}\right)-1}{\tan ^{2}\left(540^{\circ}+x\right) \sin \left(90^{\circ}+x\right) \cos (-x)} \] **Result:** The calculation timed out, indicating that it may be too complex to simplify directly. We can analyze it further if needed. ### 2. Expression: \[ \left[\sin (-\theta)+\cos \left(360^{\circ}+\theta\right)\right]\left[\cos \left(\theta-90^{\circ}\right)+\cos \left(180^{\circ}+\theta\right)\right] \] **Simplified Result:** \[ (-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45) \] ### 3. Expression: \[ \cos ^{2} \theta\left(1+\tan ^{2} \theta\right) \] **Simplified Result:** \[ \cos(\theta ^{2})+\sin(\theta ^{2}) \] ### 4. Expression: \[ \frac{1-\cos ^{2} \theta}{1-\sin ^{2} \theta} \] **Simplified Result:** \[ \frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})} \] ### Summary of Results: 1. The first expression requires further analysis due to timeout. 2. The second expression simplifies to \((-2\cos(135)\sin(\theta)+2\cos(135)\cos(\theta +360))\cos(\theta +45)\). 3. The third expression simplifies to \(\cos(\theta ^{2})+\sin(\theta ^{2})\). 4. The fourth expression simplifies to \(\frac{1-\cos(\theta ^{2})}{1-\sin(\theta ^{2})}\). If you need further assistance with the first expression or any other part, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that trigonometric identities have been used to solve real-world problems related to architecture and engineering for centuries? Ancient civilizations, including the Greeks and Egyptians, utilized angle measurements and trigonometric principles to design their iconic structures. This mathematical toolkit helps architects ensure their designs are stable and aesthetically pleasing, weaving geometry and algebra into the fabric of humanity’s grand designs! If you find yourself grappling with trigonometric expressions, one common pitfall is overlooking fundamental identities. Remember that \(\sin(90^\circ - x) = \cos(x)\) and \(\cos(90^\circ - x) = \sin(x)\). When simplifying expressions, it’s often helpful to rewrite terms in a more familiar format. This allows you to harness these relationships effectively and avoid confusion — your future (and your calculations) will thank you!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad