Question

7. \( \sin 2 x+5=5,83 \)

Ask by Collins Pritchard. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solutions are \( x \approx 0.489554 + k\pi \) or \( x \approx 1.081242 + k\pi \), where \( k \) is any whole number.

Solution

Solve the equation \( \sin(2x)+5=5.83 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sin\left(2x\right)+5=5.83\) - step1: Move the constant to the right side: \(\sin\left(2x\right)=5.83-5\) - step2: Subtract the numbers: \(\sin\left(2x\right)=0.83\) - step3: Use the inverse trigonometric function: \(2x=\arcsin\left(0.83\right)\) - step4: Calculate: \(\begin{align}&2x=\arcsin\left(0.83\right)\\&2x=-\arcsin\left(0.83\right)+\pi \end{align}\) - step5: Add the period: \(\begin{align}&2x=\arcsin\left(0.83\right)+2k\pi ,k \in \mathbb{Z}\\&2x=-\arcsin\left(0.83\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Calculate: \(\begin{align}&x=\frac{\arcsin\left(0.83\right)}{2}+k\pi ,k \in \mathbb{Z}\\&2x=-\arcsin\left(0.83\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step7: Calculate: \(\begin{align}&x=\frac{\arcsin\left(0.83\right)}{2}+k\pi ,k \in \mathbb{Z}\\&x=\frac{-\arcsin\left(0.83\right)+\pi }{2}+k\pi ,k \in \mathbb{Z}\end{align}\) - step8: Find the union: \(x=\left\{ \begin{array}{l}\frac{\arcsin\left(0.83\right)}{2}+k\pi \\\frac{-\arcsin\left(0.83\right)+\pi }{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step9: Simplify: \(x\approx \left\{ \begin{array}{l}0.489554+k\pi \\1.081242+k\pi \end{array}\right.,k \in \mathbb{Z}\) The solution to the equation \( \sin(2x) + 5 = 5.83 \) is \( x \approx 0.489554 + k\pi \) or \( x \approx 1.081242 + k\pi \), where \( k \) is an integer.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \sin 2x + 5 = 5.83 \), we first isolate the sine function. Subtract 5 from both sides: \(\sin 2x = 5.83 - 5 = 0.83\). Now, we find the angle \(2x\) whose sine is 0.83. Using the inverse sine function, we have: \(2x = \arcsin(0.83)\). Then, we can find the principal value and also consider the periodic nature of the sine function. Thus, \(2x \approx 56.44^\circ\) or in radians \(\approx 0.986\) radians. Don't forget that the sine function is positive in both the first and second quadrants, so also consider: \(2x = 180^\circ - 56.44^\circ = 123.56^\circ\) or in radians \(2x \approx 2.155\) radians. Finally, divide by 2 to find \(x\): \(x \approx 28.22^\circ\) or \(x \approx 61.78^\circ\) (in radians, \(x \approx 0.493\) and \(x \approx 1.089\)). And don’t forget to check the periodic solution by including \(n\) in the sine periodicity formula! Now you've got two angles for \(x\), and the world of trigonometry just keeps spinning!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy