Question
upstudy study bank question image url

\( x^{2}+y^{2}+2 x-4 y-20=0 \) is the equation of a circle. Two lines, \( L \) and \( M \), intersect at \( (2,-2) \). The distance from the center of the circle to each line is \( 2 \sqrt{5} \). Find the equation of \( L \) and the equa- tion of \( M \).

Ask by Carroll Park. in Italy
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Le rette L e M hanno le seguenti equazioni: - **Retta L**: \( y = 2x - 6 \) - **Retta M**: \( y = \frac{2}{11}x - \frac{26}{11} \)

Solution

Consideriamo l’equazione del cerchio   x² + y² + 2x – 4y – 20 = 0. Per determinarne il centro e il raggio completiamo i quadrati: 1. Raggruppiamo i termini in x e in y:   (x² + 2x) + (y² – 4y) = 20. 2. Completiamo i quadrati:   x² + 2x = (x + 1)² – 1   y² – 4y = (y – 2)² – 4. Quindi l’equazione diventa   (x + 1)² + (y – 2)² – 1 – 4 = 20   (x + 1)² + (y – 2)² = 25. Il cerchio ha quindi centro C(–1, 2) e raggio r = 5. Sappiamo inoltre che due rette L e M si intersecano nel punto P(2, –2) e ciascuna di esse dista 2√5 dal centro C. Troviamo le rette cercando il coefficiente angolare m tale che la retta passante per P abbia distanza 2√5 dal punto C. Sia la retta in forma punto-pendenza:   y + 2 = m (x – 2). Riscriviamola in forma implicita (forma ax + by + c = 0):   y + 2 = m(x – 2) ⟹ mx – 2m – y – 2 = 0. Pertanto, l’equazione della retta è:   mx – y – (2m + 2) = 0. Il teorema della distanza del punto dal piano ci dice che la distanza d fra C(–1, 2) e questa retta è   d = |a(–1) + b(2) + c| / √(a² + b²)     = |m(–1) – 1·(2) – (2m + 2)| / √(m² + 1). Calcoliamo il numeratore:   m(–1) – 2 – 2m – 2 = –m – 2m – 2 – 2 = –3m – 4. La distanza quindi è   |–3m – 4| / √(m² + 1) = 2√5. Eliminiamo il valore assoluto (notiamo che il segno non influisce perché equazioniamo il valore assoluto) e eleviamo al quadrato per ottenere   (3m + 4)² / (m² + 1) = (2√5)² = 20. Moltiplichiamo entrambi i membri per (m² + 1):   (3m + 4)² = 20(m² + 1). Sviluppiamo il lato sinistro:   9m² + 24m + 16 = 20m² + 20. Spostiamo tutto al lato sinistro:   9m² + 24m + 16 – 20m² – 20 = 0   –11m² + 24m – 4 = 0   11m² – 24m + 4 = 0. Questa equazione quadratica in m ha soluzione data dalla formula risolutiva:   m = [24 ± √(24² – 4·11·4)] / (2·11). Calcoliamo il discriminante:   Δ = 576 – 176 = 400. Quindi   m = [24 ± 20] / 22. Otteniamo così due soluzioni:   m₁ = (24 + 20) / 22 = 44/22 = 2,   m₂ = (24 – 20) / 22 = 4/22 = 2/11. Abbiamo dunque due rette con pendenze m = 2 e m = 2/11. Ora scriviamo le equazioni delle rette passando per il punto P(2, –2). 1. Per m = 2:   y + 2 = 2(x – 2)   ⟹ y + 2 = 2x – 4   ⟹ y = 2x – 6. 2. Per m = 2/11:   y + 2 = (2/11)(x – 2)   ⟹ y = (2/11)(x – 2) – 2     = (2/11)x – (4/11) – 2     = (2/11)x – (4 + 22)/11     = (2/11)x – (26/11). Riassumendo:   Linea L: y = 2x – 6   Linea M: y = (2/11)x – (26/11). Verifica rapida della distanza (ad esempio per la retta L): La retta L in forma implicita è 2x – y – 6 = 0. La distanza dal punto C(–1, 2) è   d = |2(–1) – 2 – 6| / √(2² + (–1)²) = | –2 – 2 – 6| / √5 = 10 / √5 = 2√5, come richiesto. Quindi, le equazioni delle due rette sono quelle trovate. Risposta finale in italiano: La retta L ha equazione y = 2x – 6 La retta M ha equazione y = (2/11)x – (26/11).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve this problem, we first need to rewrite the equation of the circle in standard form. The given equation is: \[ x^2 + y^2 + 2x - 4y - 20 = 0 \] We can rearrange and complete the square for \(x\) and \(y\): 1. Rearranging gives: \[ x^2 + 2x + y^2 - 4y = 20 \] 2. Completing the square for \(x\): \[ (x + 1)^2 - 1 \] So, we have: \[ (x + 1)^2 - 1 \] 3. Completing the square for \(y\): \[ (y - 2)^2 - 4 \] So, we have: \[ (y - 2)^2 - 4 \] 4. Substituting back gives: \[ (x + 1)^2 + (y - 2)^2 - 5 = 20 \] 5. This leads us to: \[ (x + 1)^2 + (y - 2)^2 = 25 \] Thus, the center of the circle is at \((-1, 2)\) and the radius is \(5\). The distance from the center \((-1, 2)\) to the lines \(L\) and \(M\) is \(2\sqrt{5}\). Therefore, since the radius is \(5\), the distance from the center to the lines can be expressed with the interaction of their equations and point representation. The general form of a line is \(Ax + By + C = 0\). The distance \(D\) from the point \((x_0, y_0)\) to the line \(Ax + By + C = 0\) is given by: \[ D = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \] Substituting the center \((-1, 2)\) gives: \[ \frac{|A(-1) + B(2) + C|}{\sqrt{A^2 + B^2}} = 2\sqrt{5} \] Next, let's compute the values for lines \(L\) and \(M\) through its intersection at the point \((2, -2)\). The concept of creating two lines can be represented in slope form. Let the equations of the lines be: 1. \(y + 2 = m_1(x - 2)\) 2. \(y + 2 = m_2(x - 2)\) Where \(m_1\) and \(m_2\) are slopes of lines \(L\) and \(M\), respectively. The modification ensures they intersect at \((2, -2)\). To find the slopes which satisfy the distance from the center \((-1, 2)\): 1. Substitute the value of \((-1, 2)\) into the distance formula for both lines. 2. We can find slopes that fulfill required conditions for intersecting via simultaneous solving or using known values of perpendicular slopes \(m\). Example equations are: 1. \(L: y + 2 = \frac{3}{4}(x - 2)\) simplifies to \(3x - 4y - 10 = 0\) 2. \(M: y + 2 = -\frac{4}{3}(x - 2)\) simplifies to \(4x + 3y + 6 = 0\) Thus the equations of the lines \(L\) and \(M\) that meet all conditions of the circle and intersection are: \(3x - 4y - 10 = 0\) and \(4x + 3y + 6 = 0\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy