Question
upstudy study bank question image url

11 Simplify the following \( 111 \quad(m-2 n)\left(m^{2}-6 m n-n^{2}\right) \) \( 11.2 \frac{x^{2}-4}{x^{2}-5 x+6} \times \frac{3-x}{x+2} \) \( 1.3 \quad \frac{y^{3}-1}{y^{2}+y+1}-\frac{4 y^{2}-3 y-1}{4 y+1} \)

Ask by Harmon Daniels. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 1. \( 111(m - 2n)(m^{2} - 6mn - n^{2}) = 111m^{3} - 888m^{2}n + 1221mn^{2} + 222n^{3} \) 2. \( \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} = -1 \) 3. \( \frac{y^{3}-1}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} = 0 \)

Solution

Simplify the expression by following steps: - step0: Solution: \(111\left(m-2n\right)\left(m^{2}-6mn-n^{2}\right)\) - step1: Multiply the terms: \(\left(111m-222n\right)\left(m^{2}-6mn-n^{2}\right)\) - step2: Apply the distributive property: \(111m\times m^{2}-111m\times 6mn-111mn^{2}-222nm^{2}-\left(-222n\times 6mn\right)-\left(-222n\times n^{2}\right)\) - step3: Multiply the terms: \(111m^{3}-666m^{2}n-111mn^{2}-222nm^{2}-\left(-1332n^{2}m\right)-\left(-222n^{3}\right)\) - step4: Remove the parentheses: \(111m^{3}-666m^{2}n-111mn^{2}-222nm^{2}+1332n^{2}m+222n^{3}\) - step5: Subtract the terms: \(111m^{3}-888m^{2}n+1221mn^{2}+222n^{3}\) Calculate or simplify the expression \( (y^3 - 1) / (y^2 + y + 1) - (4 * y^2 - 3 * y - 1) / (4 * y + 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(y^{3}-1\right)}{\left(y^{2}+y+1\right)}-\frac{\left(4y^{2}-3y-1\right)}{\left(4y+1\right)}\) - step1: Remove the parentheses: \(\frac{y^{3}-1}{y^{2}+y+1}-\frac{4y^{2}-3y-1}{4y+1}\) - step2: Simplify: \(y-1-\frac{4y^{2}-3y-1}{4y+1}\) - step3: Divide the terms: \(y-1-\left(y-1\right)\) - step4: Subtract the terms: \(0\) Calculate or simplify the expression \( (x^2 - 4) / (x^2 - 5 * x + 6) * (3 - x) / (x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}-4\right)}{\left(x^{2}-5x+6\right)}\times \left(3-x\right)}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}-4}{x^{2}-5x+6}\times \left(3-x\right)}{x+2}\) - step2: Divide the terms: \(\frac{\frac{x+2}{x-3}\times \left(3-x\right)}{x+2}\) - step3: Multiply the terms: \(\frac{\frac{\left(x+2\right)\left(-x+3\right)}{x-3}}{x+2}\) - step4: Multiply by the reciprocal: \(\frac{\left(x+2\right)\left(-x+3\right)}{x-3}\times \frac{1}{x+2}\) - step5: Reduce the fraction: \(\frac{-x+3}{x-3}\times 1\) - step6: Multiply the terms: \(\frac{-x+3}{x-3}\) - step7: Calculate: \(\frac{-\left(x-3\right)}{x-3}\) - step8: Reduce the fraction: \(-1\) Here are the simplified results for each of the expressions: ### 11 For the expression \[ 111 \quad (m - 2n)(m^{2} - 6mn - n^{2}) \] the simplification yields: \[ 111m^{3} - 888m^{2}n + 1221mn^{2} + 222n^{3} \] ### 11.2 For the expression \[ \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} \] the simplification results in: \[ -1 \] ### 1.3 For the expression \[ \frac{y^{3}-1}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} \] the simplification gives: \[ 0 \] If you have any further questions or need additional assistance, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expression \(111(m-2n)(m^{2}-6mn-n^{2})\), we first need to factor \(m^{2}-6mn-n^{2}\). This expression can be factored as \((m-n)(m-5n)\). Now substituting back into the expression gives us \(111(m-2n)(m-n)(m-5n)\). This is a factored form, ready for any further operations. For the second expression \( \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} \), we can simplify \(x^{2}-4\) to \((x-2)(x+2)\) and \(x^{2}-5x+6\) to \((x-2)(x-3)\). Thus, we have: \[ \frac{(x-2)(x+2)}{(x-2)(x-3)} \times \frac{3-x}{x+2} \] The \( (x-2) \) terms cancel out, leaving us with: \[ \frac{(3-x)}{(x-3)} \] And since \(3-x = -(x-3)\), the final simplified expression is \(-1\). For the last expression \( \frac{y^{3}-1}{y^{2}+y+1}-\frac{4y^{2}-3y-1}{4y+1} \), we can factor \(y^{3}-1\) to \((y-1)(y^{2}+y+1)\). Substituting yields: \[ \frac{(y-1)(y^{2}+y+1)}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} \] This cancels out the common term \(y^{2}+y+1\), simplifying it to \(y-1 - \frac{4y^{2}-3y-1}{4y+1}\). To combine these fractions, we find a common denominator: \[ (y-1)(4y+1) - (4y^{2}-3y-1) \] Expanding and rearranging gives us a combined expression which can then be simplified further by collecting like terms.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy