Pregunta
upstudy study bank question image url

11 Simplify the following \( 111 \quad(m-2 n)\left(m^{2}-6 m n-n^{2}\right) \) \( 11.2 \frac{x^{2}-4}{x^{2}-5 x+6} \times \frac{3-x}{x+2} \) \( 1.3 \quad \frac{y^{3}-1}{y^{2}+y+1}-\frac{4 y^{2}-3 y-1}{4 y+1} \)

Ask by Harmon Daniels. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: 1. \( 111(m - 2n)(m^{2} - 6mn - n^{2}) = 111m^{3} - 888m^{2}n + 1221mn^{2} + 222n^{3} \) 2. \( \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} = -1 \) 3. \( \frac{y^{3}-1}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} = 0 \)

Solución

Simplify the expression by following steps: - step0: Solution: \(111\left(m-2n\right)\left(m^{2}-6mn-n^{2}\right)\) - step1: Multiply the terms: \(\left(111m-222n\right)\left(m^{2}-6mn-n^{2}\right)\) - step2: Apply the distributive property: \(111m\times m^{2}-111m\times 6mn-111mn^{2}-222nm^{2}-\left(-222n\times 6mn\right)-\left(-222n\times n^{2}\right)\) - step3: Multiply the terms: \(111m^{3}-666m^{2}n-111mn^{2}-222nm^{2}-\left(-1332n^{2}m\right)-\left(-222n^{3}\right)\) - step4: Remove the parentheses: \(111m^{3}-666m^{2}n-111mn^{2}-222nm^{2}+1332n^{2}m+222n^{3}\) - step5: Subtract the terms: \(111m^{3}-888m^{2}n+1221mn^{2}+222n^{3}\) Calculate or simplify the expression \( (y^3 - 1) / (y^2 + y + 1) - (4 * y^2 - 3 * y - 1) / (4 * y + 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(y^{3}-1\right)}{\left(y^{2}+y+1\right)}-\frac{\left(4y^{2}-3y-1\right)}{\left(4y+1\right)}\) - step1: Remove the parentheses: \(\frac{y^{3}-1}{y^{2}+y+1}-\frac{4y^{2}-3y-1}{4y+1}\) - step2: Simplify: \(y-1-\frac{4y^{2}-3y-1}{4y+1}\) - step3: Divide the terms: \(y-1-\left(y-1\right)\) - step4: Subtract the terms: \(0\) Calculate or simplify the expression \( (x^2 - 4) / (x^2 - 5 * x + 6) * (3 - x) / (x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}-4\right)}{\left(x^{2}-5x+6\right)}\times \left(3-x\right)}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}-4}{x^{2}-5x+6}\times \left(3-x\right)}{x+2}\) - step2: Divide the terms: \(\frac{\frac{x+2}{x-3}\times \left(3-x\right)}{x+2}\) - step3: Multiply the terms: \(\frac{\frac{\left(x+2\right)\left(-x+3\right)}{x-3}}{x+2}\) - step4: Multiply by the reciprocal: \(\frac{\left(x+2\right)\left(-x+3\right)}{x-3}\times \frac{1}{x+2}\) - step5: Reduce the fraction: \(\frac{-x+3}{x-3}\times 1\) - step6: Multiply the terms: \(\frac{-x+3}{x-3}\) - step7: Calculate: \(\frac{-\left(x-3\right)}{x-3}\) - step8: Reduce the fraction: \(-1\) Here are the simplified results for each of the expressions: ### 11 For the expression \[ 111 \quad (m - 2n)(m^{2} - 6mn - n^{2}) \] the simplification yields: \[ 111m^{3} - 888m^{2}n + 1221mn^{2} + 222n^{3} \] ### 11.2 For the expression \[ \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} \] the simplification results in: \[ -1 \] ### 1.3 For the expression \[ \frac{y^{3}-1}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} \] the simplification gives: \[ 0 \] If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify the expression \(111(m-2n)(m^{2}-6mn-n^{2})\), we first need to factor \(m^{2}-6mn-n^{2}\). This expression can be factored as \((m-n)(m-5n)\). Now substituting back into the expression gives us \(111(m-2n)(m-n)(m-5n)\). This is a factored form, ready for any further operations. For the second expression \( \frac{x^{2}-4}{x^{2}-5x+6} \times \frac{3-x}{x+2} \), we can simplify \(x^{2}-4\) to \((x-2)(x+2)\) and \(x^{2}-5x+6\) to \((x-2)(x-3)\). Thus, we have: \[ \frac{(x-2)(x+2)}{(x-2)(x-3)} \times \frac{3-x}{x+2} \] The \( (x-2) \) terms cancel out, leaving us with: \[ \frac{(3-x)}{(x-3)} \] And since \(3-x = -(x-3)\), the final simplified expression is \(-1\). For the last expression \( \frac{y^{3}-1}{y^{2}+y+1}-\frac{4y^{2}-3y-1}{4y+1} \), we can factor \(y^{3}-1\) to \((y-1)(y^{2}+y+1)\). Substituting yields: \[ \frac{(y-1)(y^{2}+y+1)}{y^{2}+y+1} - \frac{4y^{2}-3y-1}{4y+1} \] This cancels out the common term \(y^{2}+y+1\), simplifying it to \(y-1 - \frac{4y^{2}-3y-1}{4y+1}\). To combine these fractions, we find a common denominator: \[ (y-1)(4y+1) - (4y^{2}-3y-1) \] Expanding and rearranging gives us a combined expression which can then be simplified further by collecting like terms.

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad