wing sad leave your answer in exponeutial fo (2) \( \frac{23^{9} \times 11^{3}}{23^{17} \times 11^{4}} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To simplify the expression \( \frac{23^{9} \times 11^{3}}{23^{17} \times 11^{4}} \), you can use the property of exponents that states \( \frac{a^m}{a^n} = a^{m-n} \). Starting with the \(23\) terms, we have: \[ \frac{23^{9}}{23^{17}} = 23^{9-17} = 23^{-8} \] Now for the \(11\) terms: \[ \frac{11^{3}}{11^{4}} = 11^{3-4} = 11^{-1} \] Putting it all together, we get: \[ \frac{23^{9} \times 11^{3}}{23^{17} \times 11^{4}} = 23^{-8} \times 11^{-1} \] This can be expressed in exponential form as: \[ \frac{1}{23^{8} \times 11} \] So the final answer in exponential form is: \[ 23^{-8} \times 11^{-1} \]