Question
upstudy study bank question image url

Simplify the following expression to a single trigonometric ratio: \[ \frac{\sin \left(360^{\circ}-x\right) \cdot \tan (-x)}{\cos \left(180^{\circ}+x\right) \cdot\left(\sin ^{2} A+\cos ^{2} A\right)} \]

Ask by Washington Clark. in South Africa
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The expression simplifies to – tan² x.

Solution

We start with the expression   [sin(360° – x) · tan(–x)] / [cos(180° + x) · (sin² A + cos² A)]. Step 1. Recognize the Pythagorean identity:   sin²A + cos²A = 1. Thus, the expression reduces to   [sin(360° – x) · tan(–x)] / cos(180° + x). Step 2. Simplify each trigonometric function: • For sin(360° – x):   Recall that sin(360° – x) = – sin x.   (Verification: sin 330° = – sin 30°.) • For tan(–x):   Since the tangent function is odd, tan(–x) = – tan x. • For cos(180° + x):   Recall that cos(180° + x) = – cos x. Step 3. Substitute these results back into the expression:   [(– sin x) · (– tan x)] / (– cos x)   = [sin x · tan x] / (– cos x). Step 4. Express tan x in terms of sine and cosine:   tan x = sin x/cos x. So, the expression becomes   [sin x · (sin x/cos x)] / (– cos x)   = (sin² x/cos x) / (– cos x). Step 5. Simplify the expression further:   (sin² x/cos x) divided by cos x is sin² x/cos² x, with an overall negative sign:   = – (sin² x/cos² x)   = – tan² x. Final Answer: The given expression simplifies to – tan² x.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \[ \frac{\sin \left(360^{\circ}-x\right) \cdot \tan (-x)}{\cos \left(180^{\circ}+x\right) \cdot\left(\sin ^{2} A+\cos ^{2} A\right)}, \] we can start by evaluating the trigonometric functions inside the expression. 1. **Evaluate \(\sin(360^{\circ} - x)\)**: \[ \sin(360^{\circ} - x) = -\sin(x) \] 2. **Evaluate \(\tan(-x)\)**: \[ \tan(-x) = -\tan(x) \] 3. **Evaluate \(\cos(180^{\circ} + x)\)**: \[ \cos(180^{\circ} + x) = -\cos(x) \] 4. **Evaluate \(\sin^{2} A + \cos^{2} A\)**: This is a fundamental identity that equals to 1: \[ \sin^{2} A + \cos^{2} A = 1 \] Now substitute these values back into the expression: \[ \frac{\sin(360^{\circ}-x) \cdot \tan(-x)}{\cos(180^{\circ}+x) \cdot\left(\sin^{2} A+\cos^{2} A\right)} = \frac{(-\sin(x)) \cdot (-\tan(x))}{-\cos(x) \cdot 1} \] This simplifies to: \[ \frac{\sin(x) \tan(x)}{\cos(x)} \] Now since \(\tan(x) = \frac{\sin(x)}{\cos(x)}\), we can substitute that into the expression: \[ \frac{\sin(x) \cdot \frac{\sin(x)}{\cos(x)}}{\cos(x)} = \frac{\sin^2(x)}{\cos^2(x)} \] This can be rewritten as: \[ \tan^2(x) \] Thus, the simplified form of the given expression is \[ \boxed{\tan^2(x)}. \]

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy