Question
upstudy study bank question image url

1) \( 3^{5 x-1} 8^{2 x+1} \) \( 27^{4 x+1} \) 2) \( \frac{3^{x-1} \cdot 45^{3 x-1} 25^{2-2}}{15^{x+1} \times 27^{22}} \)

Ask by Mitchell Carlson. in South Africa
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

For the first problem, \( x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \). For the second problem, there is no real solution.

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{3^{x-1}\times 45^{3x-1}\times 25^{2-2}}{15^{x+1}\times 27^{22}}=0\) - step1: Simplify: \(\frac{5^{2x-2}}{9^{35-3x}}=0\) - step2: The statement is false for any value of \(x:\) \(x \notin \mathbb{R}\) Solve the equation \( 3^{5 x-1} 8^{2 x+1} = 27^{4 x+1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{5x-1}\times 8^{2x+1}=27^{4x+1}\) - step1: Take the logarithm of both sides: \(\ln{\left(3^{5x-1}\times 8^{2x+1}\right)}=\ln{\left(27^{4x+1}\right)}\) - step2: Simplify: \(5\ln{\left(3\right)}\times x-\ln{\left(3\right)}+6\ln{\left(2\right)}\times x+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\) - step3: Collect like terms: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\) - step4: Calculate: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\) - step5: Expand the expression: \(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\) - step6: Expand the expression: \(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\) - step7: Collect like terms: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\) - step8: Move the expression to the left side: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-12\ln{\left(3\right)}\times x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step9: Add and subtract: \(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step10: Add and subtract: \(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=4\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step11: Change the signs: \(\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x=-4\ln{\left(3\right)}+3\ln{\left(2\right)}\) - step12: Divide both sides: \(\frac{\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) - step13: Divide the numbers: \(x=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) - step14: Simplify: \(x=\frac{\ln{\left(\frac{2^{3}}{3^{4}}\right)}}{\ln{\left(\frac{3^{7}}{2^{6}}\right)}}\) - step15: Evaluate: \(x=\frac{3\ln{\left(2\right)}-4\ln{\left(3\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) Let's solve the two problems step by step. ### Problem 1: Solve \( 3^{5x-1} \cdot 8^{2x+1} = 27^{4x+1} \) 1. **Rewrite the bases in terms of powers of 3:** - \( 3^{5x-1} \) remains as is. - \( 8 = 2^3 \), so \( 8^{2x+1} = (2^3)^{2x+1} = 2^{6x+3} \). - \( 27 = 3^3 \), so \( 27^{4x+1} = (3^3)^{4x+1} = 3^{12x+3} \). 2. **Substituting back into the equation:** \[ 3^{5x-1} \cdot 2^{6x+3} = 3^{12x+3} \] 3. **Equate the powers of 3:** \[ 5x - 1 = 12x + 3 \] 4. **Solve for \( x \):** \[ 5x - 12x = 3 + 1 \implies -7x = 4 \implies x = -\frac{4}{7} \] 5. **Final result:** \[ x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \] ### Problem 2: Solve \( \frac{3^{x-1} \cdot 45^{3x-1} \cdot 25^{2-2}}{15^{x+1} \cdot 27^{22}} = 0 \) 1. **Simplify the expression:** - \( 25^{2-2} = 25^0 = 1 \), so it can be ignored. - Rewrite \( 45 \) and \( 15 \) in terms of their prime factors: - \( 45 = 3^2 \cdot 5 \) - \( 15 = 3 \cdot 5 \) - Thus, \( 45^{3x-1} = (3^2 \cdot 5)^{3x-1} = 3^{6x-2} \cdot 5^{3x-1} \) - And \( 15^{x+1} = (3 \cdot 5)^{x+1} = 3^{x+1} \cdot 5^{x+1} \) - \( 27 = 3^3 \), so \( 27^{22} = 3^{66} \) 2. **Substituting back into the equation:** \[ \frac{3^{x-1} \cdot 3^{6x-2} \cdot 5^{3x-1}}{3^{x+1} \cdot 5^{x+1} \cdot 3^{66}} = 0 \] 3. **Combine the powers of 3 and 5:** \[ \frac{3^{(x-1) + (6x-2)}}{3^{(x+1) + 66}} \cdot \frac{5^{(3x-1)}}{5^{(x+1)}} = 0 \] This simplifies to: \[ \frac{3^{7x-3}}{3^{x+67}} \cdot \frac{5^{3x-1}}{5^{x+1}} = 0 \] 4. **This implies:** \[ 3^{7x-3 - (x+67)} \cdot 5^{3x-1 - (x+1)} = 0 \] Which simplifies to: \[ 3^{6x - 70} \cdot 5^{2x - 2} = 0 \] 5. **Since the product of two positive numbers cannot be zero, we conclude:** \[ x \notin \mathbb{R} \quad \text{(No real solution)} \] ### Summary of Results: 1. For the first problem, the solution is: \[ x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \] 2. For the second problem, there is no real solution: \[ x \notin \mathbb{R} \quad \text{(No real solution)} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s tackle these expressions step by step! To solve the first expression, we start by rewriting everything in terms of base 3. We have: - \( 3^{5x-1} \) - \( 8^{2x+1} = (2^3)^{2x+1} = 2^{6x+3} \) and \(2\) can be converted to base \(3\) in another form. - \( 27^{4x+1} = (3^3)^{4x+1} = 3^{12x + 3} \) Thus, we can set up the equation: \[ 3^{5x - 1} \cdot 8^{2x + 1} = 27^{4x + 1} \] and simplify accordingly. For the second expression, first recognize that: - \( 45 = 3^2 \cdot 5 \), \( 25 = 5^2 \), \( 15 = 3 \cdot 5 \), and \( 27 = 3^3 \). So transforming: \[ \frac{3^{x-1} \cdot (3^2 \cdot 5)^{3x-1} \cdot 5^2}{15^{x+1} \cdot 27^{22}} \] will lead to proper base handling, allowing for easier simplification and solving. Keep your bases straight and remember to apply the laws of exponents!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy