Answer
For the first problem, \( x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \).
For the second problem, there is no real solution.
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{3^{x-1}\times 45^{3x-1}\times 25^{2-2}}{15^{x+1}\times 27^{22}}=0\)
- step1: Simplify:
\(\frac{5^{2x-2}}{9^{35-3x}}=0\)
- step2: The statement is false for any value of \(x:\)
\(x \notin \mathbb{R}\)
Solve the equation \( 3^{5 x-1} 8^{2 x+1} = 27^{4 x+1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{5x-1}\times 8^{2x+1}=27^{4x+1}\)
- step1: Take the logarithm of both sides:
\(\ln{\left(3^{5x-1}\times 8^{2x+1}\right)}=\ln{\left(27^{4x+1}\right)}\)
- step2: Simplify:
\(5\ln{\left(3\right)}\times x-\ln{\left(3\right)}+6\ln{\left(2\right)}\times x+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\)
- step3: Collect like terms:
\(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\)
- step4: Calculate:
\(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\)
- step5: Expand the expression:
\(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\)
- step6: Expand the expression:
\(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\)
- step7: Collect like terms:
\(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\)
- step8: Move the expression to the left side:
\(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-12\ln{\left(3\right)}\times x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\)
- step9: Add and subtract:
\(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\)
- step10: Add and subtract:
\(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=4\ln{\left(3\right)}-3\ln{\left(2\right)}\)
- step11: Change the signs:
\(\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x=-4\ln{\left(3\right)}+3\ln{\left(2\right)}\)
- step12: Divide both sides:
\(\frac{\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\)
- step13: Divide the numbers:
\(x=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\)
- step14: Simplify:
\(x=\frac{\ln{\left(\frac{2^{3}}{3^{4}}\right)}}{\ln{\left(\frac{3^{7}}{2^{6}}\right)}}\)
- step15: Evaluate:
\(x=\frac{3\ln{\left(2\right)}-4\ln{\left(3\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\)
Let's solve the two problems step by step.
### Problem 1: Solve \( 3^{5x-1} \cdot 8^{2x+1} = 27^{4x+1} \)
1. **Rewrite the bases in terms of powers of 3:**
- \( 3^{5x-1} \) remains as is.
- \( 8 = 2^3 \), so \( 8^{2x+1} = (2^3)^{2x+1} = 2^{6x+3} \).
- \( 27 = 3^3 \), so \( 27^{4x+1} = (3^3)^{4x+1} = 3^{12x+3} \).
2. **Substituting back into the equation:**
\[
3^{5x-1} \cdot 2^{6x+3} = 3^{12x+3}
\]
3. **Equate the powers of 3:**
\[
5x - 1 = 12x + 3
\]
4. **Solve for \( x \):**
\[
5x - 12x = 3 + 1 \implies -7x = 4 \implies x = -\frac{4}{7}
\]
5. **Final result:**
\[
x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}}
\]
### Problem 2: Solve \( \frac{3^{x-1} \cdot 45^{3x-1} \cdot 25^{2-2}}{15^{x+1} \cdot 27^{22}} = 0 \)
1. **Simplify the expression:**
- \( 25^{2-2} = 25^0 = 1 \), so it can be ignored.
- Rewrite \( 45 \) and \( 15 \) in terms of their prime factors:
- \( 45 = 3^2 \cdot 5 \)
- \( 15 = 3 \cdot 5 \)
- Thus, \( 45^{3x-1} = (3^2 \cdot 5)^{3x-1} = 3^{6x-2} \cdot 5^{3x-1} \)
- And \( 15^{x+1} = (3 \cdot 5)^{x+1} = 3^{x+1} \cdot 5^{x+1} \)
- \( 27 = 3^3 \), so \( 27^{22} = 3^{66} \)
2. **Substituting back into the equation:**
\[
\frac{3^{x-1} \cdot 3^{6x-2} \cdot 5^{3x-1}}{3^{x+1} \cdot 5^{x+1} \cdot 3^{66}} = 0
\]
3. **Combine the powers of 3 and 5:**
\[
\frac{3^{(x-1) + (6x-2)}}{3^{(x+1) + 66}} \cdot \frac{5^{(3x-1)}}{5^{(x+1)}} = 0
\]
This simplifies to:
\[
\frac{3^{7x-3}}{3^{x+67}} \cdot \frac{5^{3x-1}}{5^{x+1}} = 0
\]
4. **This implies:**
\[
3^{7x-3 - (x+67)} \cdot 5^{3x-1 - (x+1)} = 0
\]
Which simplifies to:
\[
3^{6x - 70} \cdot 5^{2x - 2} = 0
\]
5. **Since the product of two positive numbers cannot be zero, we conclude:**
\[
x \notin \mathbb{R} \quad \text{(No real solution)}
\]
### Summary of Results:
1. For the first problem, the solution is:
\[
x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}}
\]
2. For the second problem, there is no real solution:
\[
x \notin \mathbb{R} \quad \text{(No real solution)}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution