Pregunta
upstudy study bank question image url

1) \( 3^{5 x-1} 8^{2 x+1} \) \( 27^{4 x+1} \) 2) \( \frac{3^{x-1} \cdot 45^{3 x-1} 25^{2-2}}{15^{x+1} \times 27^{22}} \)

Ask by Mitchell Carlson. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For the first problem, \( x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \). For the second problem, there is no real solution.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{3^{x-1}\times 45^{3x-1}\times 25^{2-2}}{15^{x+1}\times 27^{22}}=0\) - step1: Simplify: \(\frac{5^{2x-2}}{9^{35-3x}}=0\) - step2: The statement is false for any value of \(x:\) \(x \notin \mathbb{R}\) Solve the equation \( 3^{5 x-1} 8^{2 x+1} = 27^{4 x+1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{5x-1}\times 8^{2x+1}=27^{4x+1}\) - step1: Take the logarithm of both sides: \(\ln{\left(3^{5x-1}\times 8^{2x+1}\right)}=\ln{\left(27^{4x+1}\right)}\) - step2: Simplify: \(5\ln{\left(3\right)}\times x-\ln{\left(3\right)}+6\ln{\left(2\right)}\times x+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\) - step3: Collect like terms: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\left(4x+1\right)\times \ln{\left(3\right)}\) - step4: Calculate: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\) - step5: Expand the expression: \(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=3\ln{\left(3\right)}\times \left(4x+1\right)\) - step6: Expand the expression: \(5\ln{\left(3\right)}\times x+6\ln{\left(2\right)}\times x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\) - step7: Collect like terms: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-\ln{\left(3\right)}+3\ln{\left(2\right)}=12\ln{\left(3\right)}\times x+3\ln{\left(3\right)}\) - step8: Move the expression to the left side: \(\left(5\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x-12\ln{\left(3\right)}\times x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step9: Add and subtract: \(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=3\ln{\left(3\right)}+\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step10: Add and subtract: \(\left(-7\ln{\left(3\right)}+6\ln{\left(2\right)}\right)x=4\ln{\left(3\right)}-3\ln{\left(2\right)}\) - step11: Change the signs: \(\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x=-4\ln{\left(3\right)}+3\ln{\left(2\right)}\) - step12: Divide both sides: \(\frac{\left(7\ln{\left(3\right)}-6\ln{\left(2\right)}\right)x}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) - step13: Divide the numbers: \(x=\frac{-4\ln{\left(3\right)}+3\ln{\left(2\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) - step14: Simplify: \(x=\frac{\ln{\left(\frac{2^{3}}{3^{4}}\right)}}{\ln{\left(\frac{3^{7}}{2^{6}}\right)}}\) - step15: Evaluate: \(x=\frac{3\ln{\left(2\right)}-4\ln{\left(3\right)}}{7\ln{\left(3\right)}-6\ln{\left(2\right)}}\) Let's solve the two problems step by step. ### Problem 1: Solve \( 3^{5x-1} \cdot 8^{2x+1} = 27^{4x+1} \) 1. **Rewrite the bases in terms of powers of 3:** - \( 3^{5x-1} \) remains as is. - \( 8 = 2^3 \), so \( 8^{2x+1} = (2^3)^{2x+1} = 2^{6x+3} \). - \( 27 = 3^3 \), so \( 27^{4x+1} = (3^3)^{4x+1} = 3^{12x+3} \). 2. **Substituting back into the equation:** \[ 3^{5x-1} \cdot 2^{6x+3} = 3^{12x+3} \] 3. **Equate the powers of 3:** \[ 5x - 1 = 12x + 3 \] 4. **Solve for \( x \):** \[ 5x - 12x = 3 + 1 \implies -7x = 4 \implies x = -\frac{4}{7} \] 5. **Final result:** \[ x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \] ### Problem 2: Solve \( \frac{3^{x-1} \cdot 45^{3x-1} \cdot 25^{2-2}}{15^{x+1} \cdot 27^{22}} = 0 \) 1. **Simplify the expression:** - \( 25^{2-2} = 25^0 = 1 \), so it can be ignored. - Rewrite \( 45 \) and \( 15 \) in terms of their prime factors: - \( 45 = 3^2 \cdot 5 \) - \( 15 = 3 \cdot 5 \) - Thus, \( 45^{3x-1} = (3^2 \cdot 5)^{3x-1} = 3^{6x-2} \cdot 5^{3x-1} \) - And \( 15^{x+1} = (3 \cdot 5)^{x+1} = 3^{x+1} \cdot 5^{x+1} \) - \( 27 = 3^3 \), so \( 27^{22} = 3^{66} \) 2. **Substituting back into the equation:** \[ \frac{3^{x-1} \cdot 3^{6x-2} \cdot 5^{3x-1}}{3^{x+1} \cdot 5^{x+1} \cdot 3^{66}} = 0 \] 3. **Combine the powers of 3 and 5:** \[ \frac{3^{(x-1) + (6x-2)}}{3^{(x+1) + 66}} \cdot \frac{5^{(3x-1)}}{5^{(x+1)}} = 0 \] This simplifies to: \[ \frac{3^{7x-3}}{3^{x+67}} \cdot \frac{5^{3x-1}}{5^{x+1}} = 0 \] 4. **This implies:** \[ 3^{7x-3 - (x+67)} \cdot 5^{3x-1 - (x+1)} = 0 \] Which simplifies to: \[ 3^{6x - 70} \cdot 5^{2x - 2} = 0 \] 5. **Since the product of two positive numbers cannot be zero, we conclude:** \[ x \notin \mathbb{R} \quad \text{(No real solution)} \] ### Summary of Results: 1. For the first problem, the solution is: \[ x = \frac{3\ln{(2)} - 4\ln{(3)}}{7\ln{(3)} - 6\ln{(2)}} \] 2. For the second problem, there is no real solution: \[ x \notin \mathbb{R} \quad \text{(No real solution)} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s tackle these expressions step by step! To solve the first expression, we start by rewriting everything in terms of base 3. We have: - \( 3^{5x-1} \) - \( 8^{2x+1} = (2^3)^{2x+1} = 2^{6x+3} \) and \(2\) can be converted to base \(3\) in another form. - \( 27^{4x+1} = (3^3)^{4x+1} = 3^{12x + 3} \) Thus, we can set up the equation: \[ 3^{5x - 1} \cdot 8^{2x + 1} = 27^{4x + 1} \] and simplify accordingly. For the second expression, first recognize that: - \( 45 = 3^2 \cdot 5 \), \( 25 = 5^2 \), \( 15 = 3 \cdot 5 \), and \( 27 = 3^3 \). So transforming: \[ \frac{3^{x-1} \cdot (3^2 \cdot 5)^{3x-1} \cdot 5^2}{15^{x+1} \cdot 27^{22}} \] will lead to proper base handling, allowing for easier simplification and solving. Keep your bases straight and remember to apply the laws of exponents!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad