Answer
Solutions to the equations are:
1. \( z = -14x^{2} + 3x \)
2. \( x = -0.2 \)
3. \( x_{1} = -\frac{5+\sqrt{13}}{6}, x_{2} = \frac{-5+\sqrt{13}}{6} \)
4. \( x = -0.4 \)
For the inequalities, please provide the complete expressions for further assistance.
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(50x^{2}+40x+8=0\)
- step1: Factor the expression:
\(2\left(5x+2\right)^{2}=0\)
- step2: Divide the terms:
\(\left(5x+2\right)^{2}=0\)
- step3: Simplify the expression:
\(5x+2=0\)
- step4: Move the constant to the right side:
\(5x=0-2\)
- step5: Remove 0:
\(5x=-2\)
- step6: Divide both sides:
\(\frac{5x}{5}=\frac{-2}{5}\)
- step7: Divide the numbers:
\(x=-\frac{2}{5}\)
Solve the equation \( 9 x^{2}+15 x+3=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(9x^{2}+15x+3=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{-15\pm \sqrt{15^{2}-4\times 9\times 3}}{2\times 9}\)
- step2: Simplify the expression:
\(x=\frac{-15\pm \sqrt{15^{2}-4\times 9\times 3}}{18}\)
- step3: Simplify the expression:
\(x=\frac{-15\pm \sqrt{117}}{18}\)
- step4: Simplify the expression:
\(x=\frac{-15\pm 3\sqrt{13}}{18}\)
- step5: Separate into possible cases:
\(\begin{align}&x=\frac{-15+3\sqrt{13}}{18}\\&x=\frac{-15-3\sqrt{13}}{18}\end{align}\)
- step6: Simplify the expression:
\(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=\frac{-15-3\sqrt{13}}{18}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=-\frac{5+\sqrt{13}}{6}\end{align}\)
- step8: Rewrite:
\(x_{1}=-\frac{5+\sqrt{13}}{6},x_{2}=\frac{-5+\sqrt{13}}{6}\)
Solve the equation \( -25 x^{2}-10 x-1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(-25x^{2}-10x-1=0\)
- step1: Factor the expression:
\(-\left(5x+1\right)^{2}=0\)
- step2: Divide the terms:
\(\left(5x+1\right)^{2}=0\)
- step3: Simplify the expression:
\(5x+1=0\)
- step4: Move the constant to the right side:
\(5x=0-1\)
- step5: Remove 0:
\(5x=-1\)
- step6: Divide both sides:
\(\frac{5x}{5}=\frac{-1}{5}\)
- step7: Divide the numbers:
\(x=-\frac{1}{5}\)
Solve the equation \( 14 x^{2}-3 x+z=0 \).
Solve the equation by following steps:
- step0: Solve for \(z\):
\(14x^{2}-3x+z=0\)
- step1: Move the expression to the right side:
\(z=0-\left(14x^{2}-3x\right)\)
- step2: Subtract the terms:
\(z=-14x^{2}+3x\)
Let's solve the equations and inequalities step by step.
### Equations
1. **Equation 4:** \( 14 x^{2}-3 x+z=0 \)
To solve for \( z \), we rearrange the equation:
\[
z = -14x^{2} + 3x
\]
2. **Equation 5:** \( -25 x^{2}-10 x-1=0 \)
We can use the quadratic formula to find \( x \):
\[
x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}
\]
Here, \( a = -25 \), \( b = -10 \), and \( c = -1 \).
Calculating:
\[
x = \frac{-(-10) \pm \sqrt{(-10)^{2}-4(-25)(-1)}}{2(-25)} = \frac{10 \pm \sqrt{100 - 100}}{-50} = \frac{10}{-50} = -\frac{1}{5}
\]
Thus, \( x = -0.2 \).
3. **Equation 6:** \( 9 x^{2}+15 x+3=0 \)
Using the quadratic formula:
\[
x = \frac{-15 \pm \sqrt{15^{2}-4 \cdot 9 \cdot 3}}{2 \cdot 9} = \frac{-15 \pm \sqrt{225 - 108}}{18} = \frac{-15 \pm \sqrt{117}}{18}
\]
This gives us two solutions:
\[
x_{1} = -\frac{5+\sqrt{13}}{6}, \quad x_{2} = \frac{-5+\sqrt{13}}{6}
\]
4. **Equation 7:** \( 50 x^{2}+40 x+8=0 \)
Again, using the quadratic formula:
\[
x = \frac{-40 \pm \sqrt{40^{2}-4 \cdot 50 \cdot 8}}{2 \cdot 50} = \frac{-40 \pm \sqrt{1600 - 1600}}{100} = \frac{-40}{100} = -\frac{2}{5}
\]
Thus, \( x = -0.4 \).
### Inequalities
5. **Inequality a:** \( a_{1} \frac{x-3}{x+2}+1 \leq 0 \)
The syntax of the input expression does not match the expected format. Please provide a specific value for \( a_{1} \) or clarify the inequality.
6. **Inequality b:** \( \frac{(x+1)(x-5)}{x-5} \geqslant 1 \)
The syntax of the input expression does not match the expected format. Please clarify the inequality.
7. **Inequality c:** \( \frac{x^{2}+5 x+11}{x-2}+1 \geqslant 0 \)
The syntax of the input expression does not match the expected format. Please clarify the inequality.
### Summary of Results
- For Equation 4: \( z = -14x^{2} + 3x \)
- For Equation 5: \( x = -\frac{1}{5} \) or \( x = -0.2 \)
- For Equation 6: \( x_{1} = -\frac{5+\sqrt{13}}{6}, x_{2} = \frac{-5+\sqrt{13}}{6} \)
- For Equation 7: \( x = -\frac{2}{5} \) or \( x = -0.4 \)
Please provide clarification for the inequalities so I can assist you further!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution