Pregunta
upstudy study bank question image url

4. \( 14 x^{2}-3 x+z=0 \) 5. \( -25 x^{2}-10 x-1=0 \) 6. \( 9 x^{2}+15 x+3=0 \) 7. \( 50 x^{2}+40 x+8=0 \) 8. Solue for the inequalities : \( a_{1} \frac{x-3}{x+2}+1 \leq 0 \) b) \( \frac{(x+1)(x-5)}{x-5} \geqslant 1 \) c) \( \frac{x^{2}+5 x+11}{x-2}+1 \geqslant 0 \)

Ask by French Floyd. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions to the equations are: 1. \( z = -14x^{2} + 3x \) 2. \( x = -0.2 \) 3. \( x_{1} = -\frac{5+\sqrt{13}}{6}, x_{2} = \frac{-5+\sqrt{13}}{6} \) 4. \( x = -0.4 \) For the inequalities, please provide the complete expressions for further assistance.

Solución

Solve the quadratic equation by following steps: - step0: Solve by factoring: \(50x^{2}+40x+8=0\) - step1: Factor the expression: \(2\left(5x+2\right)^{2}=0\) - step2: Divide the terms: \(\left(5x+2\right)^{2}=0\) - step3: Simplify the expression: \(5x+2=0\) - step4: Move the constant to the right side: \(5x=0-2\) - step5: Remove 0: \(5x=-2\) - step6: Divide both sides: \(\frac{5x}{5}=\frac{-2}{5}\) - step7: Divide the numbers: \(x=-\frac{2}{5}\) Solve the equation \( 9 x^{2}+15 x+3=0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(9x^{2}+15x+3=0\) - step1: Solve using the quadratic formula: \(x=\frac{-15\pm \sqrt{15^{2}-4\times 9\times 3}}{2\times 9}\) - step2: Simplify the expression: \(x=\frac{-15\pm \sqrt{15^{2}-4\times 9\times 3}}{18}\) - step3: Simplify the expression: \(x=\frac{-15\pm \sqrt{117}}{18}\) - step4: Simplify the expression: \(x=\frac{-15\pm 3\sqrt{13}}{18}\) - step5: Separate into possible cases: \(\begin{align}&x=\frac{-15+3\sqrt{13}}{18}\\&x=\frac{-15-3\sqrt{13}}{18}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=\frac{-15-3\sqrt{13}}{18}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=\frac{-5+\sqrt{13}}{6}\\&x=-\frac{5+\sqrt{13}}{6}\end{align}\) - step8: Rewrite: \(x_{1}=-\frac{5+\sqrt{13}}{6},x_{2}=\frac{-5+\sqrt{13}}{6}\) Solve the equation \( -25 x^{2}-10 x-1=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(-25x^{2}-10x-1=0\) - step1: Factor the expression: \(-\left(5x+1\right)^{2}=0\) - step2: Divide the terms: \(\left(5x+1\right)^{2}=0\) - step3: Simplify the expression: \(5x+1=0\) - step4: Move the constant to the right side: \(5x=0-1\) - step5: Remove 0: \(5x=-1\) - step6: Divide both sides: \(\frac{5x}{5}=\frac{-1}{5}\) - step7: Divide the numbers: \(x=-\frac{1}{5}\) Solve the equation \( 14 x^{2}-3 x+z=0 \). Solve the equation by following steps: - step0: Solve for \(z\): \(14x^{2}-3x+z=0\) - step1: Move the expression to the right side: \(z=0-\left(14x^{2}-3x\right)\) - step2: Subtract the terms: \(z=-14x^{2}+3x\) Let's solve the equations and inequalities step by step. ### Equations 1. **Equation 4:** \( 14 x^{2}-3 x+z=0 \) To solve for \( z \), we rearrange the equation: \[ z = -14x^{2} + 3x \] 2. **Equation 5:** \( -25 x^{2}-10 x-1=0 \) We can use the quadratic formula to find \( x \): \[ x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a} \] Here, \( a = -25 \), \( b = -10 \), and \( c = -1 \). Calculating: \[ x = \frac{-(-10) \pm \sqrt{(-10)^{2}-4(-25)(-1)}}{2(-25)} = \frac{10 \pm \sqrt{100 - 100}}{-50} = \frac{10}{-50} = -\frac{1}{5} \] Thus, \( x = -0.2 \). 3. **Equation 6:** \( 9 x^{2}+15 x+3=0 \) Using the quadratic formula: \[ x = \frac{-15 \pm \sqrt{15^{2}-4 \cdot 9 \cdot 3}}{2 \cdot 9} = \frac{-15 \pm \sqrt{225 - 108}}{18} = \frac{-15 \pm \sqrt{117}}{18} \] This gives us two solutions: \[ x_{1} = -\frac{5+\sqrt{13}}{6}, \quad x_{2} = \frac{-5+\sqrt{13}}{6} \] 4. **Equation 7:** \( 50 x^{2}+40 x+8=0 \) Again, using the quadratic formula: \[ x = \frac{-40 \pm \sqrt{40^{2}-4 \cdot 50 \cdot 8}}{2 \cdot 50} = \frac{-40 \pm \sqrt{1600 - 1600}}{100} = \frac{-40}{100} = -\frac{2}{5} \] Thus, \( x = -0.4 \). ### Inequalities 5. **Inequality a:** \( a_{1} \frac{x-3}{x+2}+1 \leq 0 \) The syntax of the input expression does not match the expected format. Please provide a specific value for \( a_{1} \) or clarify the inequality. 6. **Inequality b:** \( \frac{(x+1)(x-5)}{x-5} \geqslant 1 \) The syntax of the input expression does not match the expected format. Please clarify the inequality. 7. **Inequality c:** \( \frac{x^{2}+5 x+11}{x-2}+1 \geqslant 0 \) The syntax of the input expression does not match the expected format. Please clarify the inequality. ### Summary of Results - For Equation 4: \( z = -14x^{2} + 3x \) - For Equation 5: \( x = -\frac{1}{5} \) or \( x = -0.2 \) - For Equation 6: \( x_{1} = -\frac{5+\sqrt{13}}{6}, x_{2} = \frac{-5+\sqrt{13}}{6} \) - For Equation 7: \( x = -\frac{2}{5} \) or \( x = -0.4 \) Please provide clarification for the inequalities so I can assist you further!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s dive into the delightful world of quadratic equations! Did you know that the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), is like a superhero for solving all those pesky \( ax^2 + bx + c = 0 \) equations? Each component tells a part of the story – \( a \) determines the shape of the parabola, \( b \) affects its position, and \( c \) sets where it hits the y-axis. So, grab your cape and get ready to tackle these equations! Now, when solving inequalities like \( a_{1} \frac{x-3}{x+2}+1 \leq 0 \), it's crucial to remember that multiplication or division by a negative number flips the inequality sign. Also, checking boundary points by substituting back into the inequality is essential to find valid solution intervals. Don’t forget graphing those expressions, as visualizing can give you clues about where solutions lie!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad