Question
upstudy study bank question image url

12. Simplify \( \begin{array}{ll}\text { a) }\left(x^{4} y^{3}\right)^{2}-x y^{3} \times x^{7} y^{3} & \text { ()) } \frac{x^{3} y^{2}}{2^{-3}} \\ \text { c) } 24 x^{2} b^{2}+a^{2} \times 3 a^{4} b^{2} \\ 12 x y^{3}-x y & \text { d) } 12 b^{4} c^{2}+3 b^{3}-4 b c^{2}\end{array} \)

Ask by Campos Lyons. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( 0 \) b) \( 8 x^{3} y^{2} \) c) \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \) d) \( 12 x y^{3} - x y \) e) \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(12b^{4}c^{2}+3b^{3}-4bc^{2}\) Calculate or simplify the expression \( (x^4 * y^3)^2 - (x * y^3) * (x^7 * y^3) \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{4}y^{3}\right)^{2}-xy^{3}x^{7}y^{3}\) - step1: Multiply the terms: \(\left(x^{4}y^{3}\right)^{2}-x^{8}y^{6}\) - step2: Rewrite the expression: \(x^{8}y^{6}-x^{8}y^{6}\) - step3: Subtract the terms: \(0\) Calculate or simplify the expression \( (x^3 * y^2) / (2^(-3)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{3}y^{2}\right)}{\left(2^{-3}\right)}\) - step1: Evaluate: \(\frac{x^{3}y^{2}}{2^{-3}}\) - step2: Rewrite the expression: \(\frac{x^{3}y^{2}}{\frac{1}{2^{3}}}\) - step3: Multiply by the reciprocal: \(x^{3}y^{2}\times 2^{3}\) - step4: Reorder the terms: \(2^{3}x^{3}y^{2}\) - step5: Evaluate the power: \(8x^{3}y^{2}\) Calculate or simplify the expression \( 24 * x^2 * b^2 + (a^2 * 3 * a^4 * b^2) \). Simplify the expression by following steps: - step0: Solution: \(24x^{2}b^{2}+\left(a^{2}\times 3a^{4}b^{2}\right)\) - step1: Multiply: \(24x^{2}b^{2}+3a^{6}b^{2}\) Calculate or simplify the expression \( 12 * x * y^3 - (x * y) \). Simplify the expression by following steps: - step0: Solution: \(12xy^{3}-xy\) Let's simplify each expression step by step: ### a) \( \left(x^{4} y^{3}\right)^{2}-x y^{3} \times x^{7} y^{3} \) 1. **Calculate \( \left(x^{4} y^{3}\right)^{2} \)**: \[ (x^4 y^3)^2 = x^{4 \cdot 2} y^{3 \cdot 2} = x^8 y^6 \] 2. **Calculate \( x y^{3} \times x^{7} y^{3} \)**: \[ x y^3 \times x^7 y^3 = x^{1 + 7} y^{3 + 3} = x^8 y^6 \] 3. **Combine the results**: \[ x^8 y^6 - x^8 y^6 = 0 \] **Result**: \( 0 \) --- ### b) \( \frac{x^{3} y^{2}}{2^{-3}} \) 1. **Calculate \( 2^{-3} \)**: \[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \] 2. **Rewrite the expression**: \[ \frac{x^3 y^2}{2^{-3}} = x^3 y^2 \times 2^3 = x^3 y^2 \times 8 = 8 x^3 y^2 \] **Result**: \( 8 x^{3} y^{2} \) --- ### c) \( 24 x^{2} b^{2}+a^{2} \times 3 a^{4} b^{2} \) 1. **Calculate \( a^{2} \times 3 a^{4} b^{2} \)**: \[ a^2 \times 3 a^4 b^2 = 3 a^{2 + 4} b^2 = 3 a^6 b^2 \] 2. **Combine the results**: \[ 24 x^2 b^2 + 3 a^6 b^2 \] **Result**: \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \) --- ### d) \( 12 x y^{3}-x y \) 1. **Factor out \( x \)**: \[ 12 x y^3 - x y = x(12 y^3 - y) \] 2. **Factor out \( y \) from the expression in parentheses**: \[ 12 y^3 - y = y(12 y^2 - 1) \] 3. **Final expression**: \[ x y (12 y^2 - 1) \] **Result**: \( 12 x y^{3} - x y \) --- ### e) \( 12 b^{4} c^{2}+3 b^{3}-4 b c^{2} \) 1. **Combine like terms**: \[ 12 b^4 c^2 + 3 b^3 - 4 b c^2 \] **Result**: \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \) --- ### Summary of Results: - a) \( 0 \) - b) \( 8 x^{3} y^{2} \) - c) \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \) - d) \( 12 x y^{3} - x y \) - e) \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Sure! Let’s dive into a couple of those problems and simplify them step by step. Starting with part a: 1. For \((x^{4} y^{3})^{2}\), we apply the power rule, which states \((a^m)^n = a^{m \cdot n}\). So this becomes \(x^{8} y^{6}\). 2. Now, simplifying \(xy^{3} \times x^{7}y^{3}\) gives \(x^{1+7}y^{3+3} = x^{8}y^{6}\). 3. Now subtract the two results: \(x^{8}y^{6} - x^{8}y^{6} = 0\). So part a simplifies to **0**. Now onto part d: 1. For \(12b^{4}c^{2} + 3b^{3} - 4bc^{2}\), we can combine like terms. The \(12b^{4}c^{2}\) and \(-4bc^{2}\) do not have like terms with \(3b^{3}\), so we just rearrange. 2. Thus, the expression is already in its simplest form: **\(12b^{4}c^{2} + 3b^{3} - 4bc^{2}\)**. And there you have it! Remember, simplifying expressions often involves combining like terms and applying the rules of exponents correctly. Happy simplifying!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy