Responder
a) \( 0 \)
b) \( 8 x^{3} y^{2} \)
c) \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \)
d) \( 12 x y^{3} - x y \)
e) \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(12b^{4}c^{2}+3b^{3}-4bc^{2}\)
Calculate or simplify the expression \( (x^4 * y^3)^2 - (x * y^3) * (x^7 * y^3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{4}y^{3}\right)^{2}-xy^{3}x^{7}y^{3}\)
- step1: Multiply the terms:
\(\left(x^{4}y^{3}\right)^{2}-x^{8}y^{6}\)
- step2: Rewrite the expression:
\(x^{8}y^{6}-x^{8}y^{6}\)
- step3: Subtract the terms:
\(0\)
Calculate or simplify the expression \( (x^3 * y^2) / (2^(-3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x^{3}y^{2}\right)}{\left(2^{-3}\right)}\)
- step1: Evaluate:
\(\frac{x^{3}y^{2}}{2^{-3}}\)
- step2: Rewrite the expression:
\(\frac{x^{3}y^{2}}{\frac{1}{2^{3}}}\)
- step3: Multiply by the reciprocal:
\(x^{3}y^{2}\times 2^{3}\)
- step4: Reorder the terms:
\(2^{3}x^{3}y^{2}\)
- step5: Evaluate the power:
\(8x^{3}y^{2}\)
Calculate or simplify the expression \( 24 * x^2 * b^2 + (a^2 * 3 * a^4 * b^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(24x^{2}b^{2}+\left(a^{2}\times 3a^{4}b^{2}\right)\)
- step1: Multiply:
\(24x^{2}b^{2}+3a^{6}b^{2}\)
Calculate or simplify the expression \( 12 * x * y^3 - (x * y) \).
Simplify the expression by following steps:
- step0: Solution:
\(12xy^{3}-xy\)
Let's simplify each expression step by step:
### a) \( \left(x^{4} y^{3}\right)^{2}-x y^{3} \times x^{7} y^{3} \)
1. **Calculate \( \left(x^{4} y^{3}\right)^{2} \)**:
\[
(x^4 y^3)^2 = x^{4 \cdot 2} y^{3 \cdot 2} = x^8 y^6
\]
2. **Calculate \( x y^{3} \times x^{7} y^{3} \)**:
\[
x y^3 \times x^7 y^3 = x^{1 + 7} y^{3 + 3} = x^8 y^6
\]
3. **Combine the results**:
\[
x^8 y^6 - x^8 y^6 = 0
\]
**Result**: \( 0 \)
---
### b) \( \frac{x^{3} y^{2}}{2^{-3}} \)
1. **Calculate \( 2^{-3} \)**:
\[
2^{-3} = \frac{1}{2^3} = \frac{1}{8}
\]
2. **Rewrite the expression**:
\[
\frac{x^3 y^2}{2^{-3}} = x^3 y^2 \times 2^3 = x^3 y^2 \times 8 = 8 x^3 y^2
\]
**Result**: \( 8 x^{3} y^{2} \)
---
### c) \( 24 x^{2} b^{2}+a^{2} \times 3 a^{4} b^{2} \)
1. **Calculate \( a^{2} \times 3 a^{4} b^{2} \)**:
\[
a^2 \times 3 a^4 b^2 = 3 a^{2 + 4} b^2 = 3 a^6 b^2
\]
2. **Combine the results**:
\[
24 x^2 b^2 + 3 a^6 b^2
\]
**Result**: \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \)
---
### d) \( 12 x y^{3}-x y \)
1. **Factor out \( x \)**:
\[
12 x y^3 - x y = x(12 y^3 - y)
\]
2. **Factor out \( y \) from the expression in parentheses**:
\[
12 y^3 - y = y(12 y^2 - 1)
\]
3. **Final expression**:
\[
x y (12 y^2 - 1)
\]
**Result**: \( 12 x y^{3} - x y \)
---
### e) \( 12 b^{4} c^{2}+3 b^{3}-4 b c^{2} \)
1. **Combine like terms**:
\[
12 b^4 c^2 + 3 b^3 - 4 b c^2
\]
**Result**: \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \)
---
### Summary of Results:
- a) \( 0 \)
- b) \( 8 x^{3} y^{2} \)
- c) \( 24 x^{2} b^{2} + 3 a^{6} b^{2} \)
- d) \( 12 x y^{3} - x y \)
- e) \( 12 b^{4} c^{2} + 3 b^{3} - 4 b c^{2} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución