Question
upstudy study bank question image url

7. (10 puntos) Con el uso de fracciones parciales determina \( \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+2 s-3}\right\} \)

Ask by Warner Goodwin. in Mexico
Nov 22,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La transformada inversa de Laplace de \( \frac{s+1}{s^{2}+2s-3} \) es \( \frac{1}{2} e^{-3t} + \frac{1}{2} e^{t} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

Para encontrar la transformada inversa de Laplace de \( \frac{s+1}{s^{2}+2s-3} \), primero factorizamos el denominador: \[ s^{2}+2s-3 = (s+3)(s-1). \] Ahora, descomponemos la fracción en fracciones parciales: \[ \frac{s+1}{(s+3)(s-1)} = \frac{A}{s+3} + \frac{B}{s-1}. \] Multiplicamos ambos lados por el denominador: \[ s + 1 = A(s - 1) + B(s + 3). \] Expandiendo y agrupando términos: \[ s + 1 = As - A + Bs + 3B = (A + B)s + (3B - A). \] Igualamos los coeficientes correspondientes: 1. \(A + B = 1\) 2. \(3B - A = 1\) Resolviendo este sistema de ecuaciones, de la primera ecuación se puede expresar \(A\) en función de \(B\): \[ A = 1 - B. \] Sustituyendo en la segunda ecuación: \[ 3B - (1 - B) = 1 \\ 3B + B - 1 = 1 \\ 4B = 2 \\ B = \frac{1}{2}. \] Sustituyendo \(B\) de nuevo en \(A = 1 - B\): \[ A = 1 - \frac{1}{2} = \frac{1}{2}. \] Entonces, la descomposición en fracciones parciales es: \[ \frac{s+1}{(s+3)(s-1)} = \frac{1/2}{s+3} + \frac{1/2}{s-1}. \] Ahora, aplicamos la transformada inversa de Laplace: \[ \mathscr{L}^{-1}\left\{\frac{1/2}{s+3}\right\} = \frac{1}{2}e^{-3t}, \quad \mathscr{L}^{-1}\left\{\frac{1/2}{s-1}\right\} = \frac{1}{2}e^{t}. \] Por lo tanto, combinando ambas: \[ \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+2s-3}\right\} = \frac{1}{2} e^{-3t} + \frac{1}{2} e^{t}. \]

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy