Simplify the following powers of i : a) \( i^{19}=\square \) b) \( i^{38}=\square \) c) \( i^{86}=\square \) d) \( i^{108}=\square \) e) \( i^{1319}=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To simplify powers of \( i \), remember that \( i \) is defined as the square root of -1, and its powers cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) This pattern repeats, so to simplify any power of \( i \), you can reduce the exponent modulo 4. a) \( i^{19} \) \( 19 \mod 4 = 3 \), so \( i^{19} = i^3 = -i \). b) \( i^{38} \) \( 38 \mod 4 = 2 \), so \( i^{38} = i^2 = -1 \). c) \( i^{86} \) \( 86 \mod 4 = 2 \), so \( i^{86} = i^2 = -1 \). d) \( i^{108} \) \( 108 \mod 4 = 0 \), so \( i^{108} = i^0 = 1 \). e) \( i^{1319} \) \( 1319 \mod 4 = 3 \), so \( i^{1319} = i^3 = -i \). So the answers are: a) \( i^{19} = -i \) b) \( i^{38} = -1 \) c) \( i^{86} = -1 \) d) \( i^{108} = 1 \) e) \( i^{1319} = -i \)