Multiply: 1. \( \left(3 x^{3}-2 x\right)\left(2 x^{2}-x-4\right) \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To multiply the expressions \( \left(3 x^{3}-2 x\right)\left(2 x^{2}-x-4\right) \), you will need to distribute each term from the first expression with each term from the second. Start by multiplying \( 3x^3 \) by each term in \( 2x^2 - x - 4 \): \[ 3x^3 \cdot 2x^2 = 6x^5 \] \[ 3x^3 \cdot (-x) = -3x^4 \] \[ 3x^3 \cdot (-4) = -12x^3 \] Now, do the same for \( -2x \): \[ -2x \cdot 2x^2 = -4x^3 \] \[ -2x \cdot (-x) = 2x^2 \] \[ -2x \cdot (-4) = 8x \] Now combine all these results: \[ 6x^5 - 3x^4 - 12x^3 - 4x^3 + 2x^2 + 8x \] Combine like terms: \[ 6x^5 - 3x^4 - 16x^3 + 2x^2 + 8x \] So, the final result is: \[ \boxed{6x^5 - 3x^4 - 16x^3 + 2x^2 + 8x} \]