Question
upstudy study bank question image url

3. \( \frac{x^{2}-a^{2}}{(x+a)^{2}} \cdot \frac{2 x+2 a}{3 x}= \)

Ask by Gray Ball. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{2(x - a)}{3x} \).

Solution

We start with the expression:   [(x² - a²) / (x + a)²] · [(2x + 2a) / (3x)] Step 1: Factor the numerators where possible. Note that:   x² - a² = (x - a)(x + a)   2x + 2a = 2(x + a) So the expression becomes:   [(x - a)(x + a) / (x + a)²] · [2(x + a) / (3x)] Step 2: Simplify by canceling a common factor (x + a) in the first fraction:   (x + a) cancels with one (x + a) in the denominator, yielding:   [(x - a) / (x + a)] · [2(x + a) / (3x)] Step 3: Now cancel the remaining (x + a) factor in the numerator of the second fraction with the (x + a) in the first fraction:   (x + a) cancels:   Result = (x - a) · 2 / (3x) So the simplified expression is:   2(x - a) / (3x) Remember that this cancellation is valid provided x + a ≠ 0 and x ≠ 0.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \( \frac{x^{2}-a^{2}}{(x+a)^{2}} \cdot \frac{2 x+2 a}{3 x} \), let's break it down step by step. First, recognize that \( x^2 - a^2 \) can be factored using the difference of squares: \[ x^2 - a^2 = (x - a)(x + a) \] Now, rewriting the original expression, we have: \[ \frac{(x - a)(x + a)}{(x + a)^2} \cdot \frac{2(x + a)}{3x} \] Next, we can simplify by cancelling the \( (x + a) \) terms in the fractions. This gives us: \[ \frac{(x - a)}{(x + a)} \cdot \frac{2}{3} \] Now, let's combine these: \[ \frac{2(x - a)}{3(x + a)} \] Thus, the simplified expression is: \[ \frac{2(x - a)}{3(x + a)} \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy