3. \( \frac{x^{2}-a^{2}}{(x+a)^{2}} \cdot \frac{2 x+2 a}{3 x}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expression \( \frac{x^{2}-a^{2}}{(x+a)^{2}} \cdot \frac{2 x+2 a}{3 x} \), let's break it down step by step. First, recognize that \( x^2 - a^2 \) can be factored using the difference of squares: \[ x^2 - a^2 = (x - a)(x + a) \] Now, rewriting the original expression, we have: \[ \frac{(x - a)(x + a)}{(x + a)^2} \cdot \frac{2(x + a)}{3x} \] Next, we can simplify by cancelling the \( (x + a) \) terms in the fractions. This gives us: \[ \frac{(x - a)}{(x + a)} \cdot \frac{2}{3} \] Now, let's combine these: \[ \frac{2(x - a)}{3(x + a)} \] Thus, the simplified expression is: \[ \frac{2(x - a)}{3(x + a)} \]
