Answer
1.1.1 \( x = 0 \) or \( x = -1 \)
1.1.2 \( x \approx 0.23 \) or \( x \approx 1.43 \)
1.1.3 \( x < 1 \) or \( x > 2 \)
1.2 \( (x, y) = (-1, 5) \) or \( (x, y) = (1, 3) \)
1.3 \( r = -0.5 \)
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x\left(x+1\right)=0\)
- step1: Separate into possible cases:
\(\begin{align}&x=0\\&x+1=0\end{align}\)
- step2: Solve the equation:
\(\begin{align}&x=0\\&x=-1\end{align}\)
- step3: Rewrite:
\(x_{1}=-1,x_{2}=0\)
Solve the equation \( 3 x^{2}-5 x+1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(3x^{2}-5x+1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3}}{2\times 3}\)
- step2: Simplify the expression:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3}}{6}\)
- step3: Simplify the expression:
\(x=\frac{5\pm \sqrt{13}}{6}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{5+\sqrt{13}}{6}\\&x=\frac{5-\sqrt{13}}{6}\end{align}\)
- step5: Rewrite:
\(x_{1}=\frac{5-\sqrt{13}}{6},x_{2}=\frac{5+\sqrt{13}}{6}\)
Solve the equation \( 2\left(x^{2}-3 x\right)>-4 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(2\left(x^{2}-3x\right)>-4\)
- step1: Move the expression to the left side:
\(2\left(x^{2}-3x\right)-\left(-4\right)>0\)
- step2: Subtract the terms:
\(2x^{2}-6x+4>0\)
- step3: Rewrite the expression:
\(2x^{2}-6x+4=0\)
- step4: Factor the expression:
\(2\left(x-2\right)\left(x-1\right)=0\)
- step5: Divide the terms:
\(\left(x-2\right)\left(x-1\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-2=0\\&x-1=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=2\\&x=1\end{align}\)
- step8: Determine the test intervals:
\(\begin{align}&x<1\\&12\end{align}\)
- step9: Choose a value:
\(\begin{align}&x_{1}=0\\&x_{2}=\frac{3}{2}\\&x_{3}=3\end{align}\)
- step10: Test the chosen value:
\(\begin{align}&x<1\textrm{ }\textrm{is the solution}\\&12\textrm{ }\textrm{is the solution}\end{align}\)
- step11: The final solution is \(x \in \left(-\infty,1\right)\cup \left(2,+\infty\right):\)
\(x \in \left(-\infty,1\right)\cup \left(2,+\infty\right)\)
Solve the equation \( 2 x^{2}-2 x=r \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2x^{2}-2x=r\)
- step1: Move the expression to the left side:
\(2x^{2}-2x-r=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{2\pm \sqrt{\left(-2\right)^{2}-4\times 2\left(-r\right)}}{2\times 2}\)
- step3: Simplify the expression:
\(x=\frac{2\pm \sqrt{\left(-2\right)^{2}-4\times 2\left(-r\right)}}{4}\)
- step4: Simplify the expression:
\(x=\frac{2\pm \sqrt{4+8r}}{4}\)
- step5: Simplify the expression:
\(x=\frac{2\pm 2\sqrt{1+2r}}{4}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{2+2\sqrt{1+2r}}{4}\\&x=\frac{2-2\sqrt{1+2r}}{4}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{1+\sqrt{1+2r}}{2}\\&x=\frac{2-2\sqrt{1+2r}}{4}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=\frac{1+\sqrt{1+2r}}{2}\\&x=\frac{1-\sqrt{1+2r}}{2}\end{align}\)
Solve the system of equations \( x=4-y; 2^{x} \times 2^{y}=2^{x^{2}+3} \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x=4-y\\2^{x}\times 2^{y}=2^{x^{2}+3}\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}x=4-y\\x+y=x^{2}+3\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(4-y+y=\left(4-y\right)^{2}+3\)
- step3: Simplify:
\(4=19-8y+y^{2}\)
- step4: Swap the sides:
\(19-8y+y^{2}=4\)
- step5: Move the expression to the left side:
\(19-8y+y^{2}-4=0\)
- step6: Subtract the numbers:
\(15-8y+y^{2}=0\)
- step7: Factor the expression:
\(\left(5-y\right)\left(3-y\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&5-y=0\\&3-y=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&y=5\\&y=3\end{align}\)
- step10: Calculate:
\(y=5\cup y=3\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=4-y\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=4-y\\y=3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=3\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=3\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-1,5\right)\cup \left(x,y\right) = \left(1,3\right)\)
Let's solve each part step by step.
### 1.1 Solve for \( x \)
#### 1.1.1 \( x(x+1)=0 \)
To solve the equation \( x(x+1)=0 \), we can set each factor to zero:
1. \( x = 0 \)
2. \( x + 1 = 0 \) which gives \( x = -1 \)
Thus, the solutions are:
\[
x_{1} = -1, \quad x_{2} = 0
\]
#### 1.1.2 \( 3 x^{2}-5 x+1=0 \)
We will use the quadratic formula to solve this equation, which is given by:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \( a = 3 \), \( b = -5 \), and \( c = 1 \).
Calculating the discriminant:
\[
b^2 - 4ac = (-5)^2 - 4 \cdot 3 \cdot 1 = 25 - 12 = 13
\]
Now applying the quadratic formula:
\[
x = \frac{5 \pm \sqrt{13}}{6}
\]
Calculating the two roots:
1. \( x_{1} = \frac{5 - \sqrt{13}}{6} \approx 0.23 \)
2. \( x_{2} = \frac{5 + \sqrt{13}}{6} \approx 1.43 \)
Thus, the solutions rounded to two decimal places are:
\[
x_{1} \approx 0.23, \quad x_{2} \approx 1.43
\]
#### 1.1.3 \( 2\left(x^{2}-3 x\right)>-4 \)
First, we simplify the inequality:
\[
2x^{2} - 6x + 4 > 0
\]
Dividing through by 2:
\[
x^{2} - 3x + 2 > 0
\]
Factoring the quadratic:
\[
(x-1)(x-2) > 0
\]
To find the intervals where this inequality holds, we analyze the critical points \( x = 1 \) and \( x = 2 \). The test intervals are:
- \( (-\infty, 1) \)
- \( (1, 2) \)
- \( (2, +\infty) \)
Testing these intervals:
- For \( x < 1 \) (e.g., \( x = 0 \)): \( (0-1)(0-2) > 0 \) is true.
- For \( 1 < x < 2 \) (e.g., \( x = 1.5 \)): \( (1.5-1)(1.5-2) < 0 \) is false.
- For \( x > 2 \) (e.g., \( x = 3 \)): \( (3-1)(3-2) > 0 \) is true.
Thus, the solution is:
\[
x \in (-\infty, 1) \cup (2, +\infty)
\]
### 1.2 Solve for \( x \) and \( y \) simultaneously
Given the equations:
1. \( x = 4 - y \)
2. \( 2^{x} \times 2^{y} = 2^{x^{2}+3} \)
Substituting \( x \) from the first equation into the second:
\[
2^{4-y} \times 2^{y} = 2^{(4-y)^{2}+3}
\]
This simplifies to:
\[
2^{4} = 2^{(4-y)^{2}+3}
\]
Thus, we have:
\[
4 = (4-y)^{2} + 3
\]
Subtracting 3 from both sides:
\[
1 = (4-y)^{2}
\]
Taking the square root:
\[
4 - y = 1 \quad \text{or} \quad 4 - y = -1
\]
This gives:
1. \( y = 3 \) leading to \( x = 1 \)
2. \( y = 5 \) leading to \( x = -1 \)
Thus, the solutions are:
\[
(x,y) = (-1,5) \quad \text{or} \quad (x,y) = (1,3)
\]
### 1.3 For which value of \( r \) will \( 2 x^{2}-2 x=r \) have equal roots?
For a quadratic equation to have equal roots, the discriminant must be zero. The equation can be rewritten as:
\[
2x^{2} - 2x - r = 0
\]
The discriminant \( D \) is given by:
\[
D = b^2 - 4ac = (-2)^2 - 4 \cdot 2 \cdot (-r) = 4 + 8r
\]
Setting the discriminant to zero for equal roots:
\[
4 + 8r = 0
\]
Solving for \( r \):
\[
8r = -4 \quad \Rightarrow \quad r = -\frac{1}{2}
\]
Thus, the value of \( r \) for which the equation has equal roots is:
\[
r = -\frac{1}{2}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution