B. \( \left(\frac{x y^{3}}{x^{\frac{1}{2}}}\right)^{\frac{2}{3}} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To simplify \( \left(\frac{x y^{3}}{x^{\frac{1}{2}}}\right)^{\frac{2}{3}} \), start by simplifying the expression inside the parentheses. This can be done by rewriting the fraction: \[ \frac{x y^{3}}{x^{\frac{1}{2}}} = x^{1 - \frac{1}{2}} y^{3} = x^{\frac{1}{2}} y^{3} \] Now, substitute this back into the expression: \[ \left(x^{\frac{1}{2}} y^{3}\right)^{\frac{2}{3}} \] Next, apply the exponent \(\frac{2}{3}\) to both terms: \[ \left(x^{\frac{1}{2}}\right)^{\frac{2}{3}} \left(y^{3}\right)^{\frac{2}{3}} = x^{\frac{1}{2} \cdot \frac{2}{3}} y^{3 \cdot \frac{2}{3}} = x^{\frac{1}{3}} y^{2} \] So, the final simplified expression is: \[ \boxed{x^{\frac{1}{3}} y^{2}} \]