Question
upstudy study bank question image url

\( \frac{1}{2}=k \quad-\frac{1}{2} y=-\frac{9}{2}+\frac{3}{2},-\frac{1}{2} y=-\frac{1}{2}, y=1 \) Natančno izračunaj kot med vektorjem \( \vec{c}=3 \vec{\imath}-4 \vec{\jmath}+5 \vec{k} \) in aplikatno osjo.

Ask by Mcguire Joseph. in Slovenia
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The angle between the vector \( \vec{c} = 3 \vec{\imath} - 4 \vec{\jmath} + 5 \vec{k} \) and the z-axis is \( 45^\circ \) or \( \frac{\pi}{4} \) radians.

Solution

Za izračun kota med vektorjem \( \vec{c} = 3 \vec{\imath} - 4 \vec{\jmath} + 5 \vec{k} \) in aplikatno osjo (osjo \( z \)), moramo najprej razumeti, da je aplikatna osja v tridimenzionalnem prostoru os \( z \), kar pomeni, da je njen vektor \( \vec{a} = 0 \vec{\imath} + 0 \vec{\jmath} + 1 \vec{k} \). Kota med dvema vektorjema lahko izračunamo s pomočjo skalarnega produkta: \[ \cos(\theta) = \frac{\vec{c} \cdot \vec{a}}{|\vec{c}| |\vec{a}|} \] Kjer je \( \vec{c} \cdot \vec{a} \) skalarni produkt vektorjev, \( |\vec{c}| \) in \( |\vec{a}| \) pa sta dolžini vektorjev. 1. **Izračunajmo skalarni produkt \( \vec{c} \cdot \vec{a} \)**: \[ \vec{c} \cdot \vec{a} = (3)(0) + (-4)(0) + (5)(1) = 5 \] 2. **Izračunajmo dolžino vektorja \( \vec{c} \)**: \[ |\vec{c}| = \sqrt{3^2 + (-4)^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2} \] 3. **Izračunajmo dolžino vektorja \( \vec{a} \)**: \[ |\vec{a}| = \sqrt{0^2 + 0^2 + 1^2} = 1 \] 4. **Vstavimo vrednosti v enačbo za \( \cos(\theta) \)**: \[ \cos(\theta) = \frac{5}{(5\sqrt{2})(1)} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] 5. **Izračunajmo kot \( \theta \)**: \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \] To je znan kot kot \( 45^\circ \) ali \( \frac{\pi}{4} \) radianov. Torej, kot med vektorjem \( \vec{c} \) in aplikatno osjo je \( 45^\circ \) ali \( \frac{\pi}{4} \) radianov.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Da bi izračunali kot med vektorjem \( \vec{c} \) in aplikatno osjo, najprej izračunamo normo vektorja \( \vec{c} \). Norma je dano s formulo: \[ ||\vec{c}|| = \sqrt{c_x^2 + c_y^2 + c_z^2} = \sqrt{3^2 + (-4)^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2} \] Kot med vektorjem in aplikatno osjo lahko izračunamo s pomočjo skalarnega produkta. Aplikatna os je predstavljena kot \( \vec{a} = 1\vec{\imath} + 0\vec{\jmath} + 0\vec{k} \). Skalarni produkt \( \vec{c} \cdot \vec{a} \) bomo izračunali kot: \[ \vec{c} \cdot \vec{a} = 3 \cdot 1 + (-4) \cdot 0 + 5 \cdot 0 = 3 \] Zadovoljimo se z izrazi za kot: \[ \cos(\theta) = \frac{\vec{c} \cdot \vec{a}}{||\vec{c}|| \cdot ||\vec{a}||} = \frac{3}{5\sqrt{2} \cdot 1} = \frac{3}{5\sqrt{2}} \] Da dobimo kot \( \theta \), uporabimo inverzno funkcijo cosinus: \[ \theta = \cos^{-1}\left(\frac{3}{5\sqrt{2}}\right) \] To nam daje kot med vektorjem \( \vec{c} \) in aplikatno osjo.

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy