Combine the following expressions. \( \sqrt{16 a}-\sqrt{49 a}+\sqrt{81 a} \) \( 6 \sqrt{a} \) \( 4 a \sqrt{3} \) \( 4 \sqrt{3 a} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To combine the given expressions, we first simplify the square roots: 1. \( \sqrt{16a} = 4\sqrt{a} \) 2. \( \sqrt{49a} = 7\sqrt{a} \) 3. \( \sqrt{81a} = 9\sqrt{a} \) Now substituting these simplified results into the expression: \[ 4\sqrt{a} - 7\sqrt{a} + 9\sqrt{a} \] Combining these like terms: \[ (4 - 7 + 9)\sqrt{a} = 6\sqrt{a} \] Now we add the other expressions \( 6\sqrt{a} + 4a\sqrt{3} + 4\sqrt{3a} \): The term \( 4\sqrt{3a} \) can be simplified as follows: \[ 4\sqrt{3a} = 4\sqrt{3} \sqrt{a} \] Now we can combine all the terms: \[ 6\sqrt{a} + 4a\sqrt{3} + 4\sqrt{3}\sqrt{a} = (6 + 4\sqrt{3})\sqrt{a} + 4a\sqrt{3} \] So the combined expression is: \[ (6 + 4\sqrt{3})\sqrt{a} + 4a\sqrt{3} \]