Combine the following expressions. \( a \sqrt{125 y}-b \sqrt{45 y} \) \( (5 a+3 b) \sqrt{5 y} \) \( (5 a-3 b) \sqrt{5 y} \) \( (-5 a-3 b) \sqrt{5 y} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Beyond the Answer
First, let's simplify the initial expression \( a \sqrt{125 y} - b \sqrt{45 y} \). We notice that \( \sqrt{125} = \sqrt{25 \cdot 5} = 5\sqrt{5} \) and \( \sqrt{45} = \sqrt{9 \cdot 5} = 3\sqrt{5} \). This allows us to rewrite the expression as: \[ a \cdot 5\sqrt{5} \cdot \sqrt{y} - b \cdot 3\sqrt{5} \cdot \sqrt{y} = (5a - 3b)\sqrt{5y} \] Now, let’s examine the rest of the expressions: 1. \( (5a + 3b) \sqrt{5y} \) 2. \( (5a - 3b) \sqrt{5y} \) 3. \( (-5a - 3b) \sqrt{5y} \) Combining them together with our simplified form yields: - The first and second expressions sum up to: \[ (5a - 3b) \sqrt{5y} + (5a + 3b) \sqrt{5y} = (10a) \sqrt{5y} \] - The third expression \( (-5a - 3b) \sqrt{5y} \) is then: \[ (10a)\sqrt{5y} + (-5a - 3b) \sqrt{5y} = (10a - 5a - 3b)\sqrt{5y} = (5a - 3b)\sqrt{5y} \] After all the combinations, we conclude that: The expression simplifies to \( (5a - 3b) \sqrt{5y} \).