Question
upstudy study bank question image url

3. Теңсіздікті шешіңіз: \( \operatorname{tg}\left(\frac{\pi}{4}-x\right)<\frac{\sqrt{3}}{3} \) \( \left(\frac{\pi}{12}+\pi n ; \frac{3 \pi}{4}+\pi n\right), n \in \mathbb{Z} \) 3) \( \left(\frac{\pi}{6}+\pi n ; \frac{3 \pi}{2}+\pi n\right), n \in \mathbb{Z} \) C) \( \left(-\frac{\pi}{12}+\pi n ; \frac{3 \pi}{4}+\pi n\right), n \in \mathbb{Z} \) ) \( \left(\frac{\pi}{12}+\pi n ; \frac{5 \pi}{4}+\pi n\right), n \in \mathbb{Z} \)

Ask by Salinas Logan. in Kazakhstan
Oct 31,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \left(\frac{\pi}{12}+\pi n ; \frac{5 \pi}{4}+\pi n\right), n \in \mathbb{Z} \]

Solution

Для решения неравенства \( \operatorname{tg}\left(\frac{\pi}{4}-x\right)<\frac{\sqrt{3}}{3} \) начнем с преобразования левой части. 1. Заменим \( \frac{\sqrt{3}}{3} \) на \( \operatorname{tg}\left(\frac{\pi}{6}\right) \). Таким образом, неравенство можно записать как: \[ \operatorname{tg}\left(\frac{\pi}{4}-x\right) < \operatorname{tg}\left(\frac{\pi}{6}\right) \] 2. Поскольку функция тангенса возрастает на интервале \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), мы можем записать: \[ \frac{\pi}{4}-x < \frac{\pi}{6} + k\pi \quad \text{или} \quad \frac{\pi}{4}-x > \frac{\pi}{6} + k\pi \] где \( k \in \mathbb{Z} \). 3. Решим первое неравенство: \[ \frac{\pi}{4} - x < \frac{\pi}{6} + k\pi \] Переносим \( x \) и упрощаем: \[ -x < \frac{\pi}{6} - \frac{\pi}{4} + k\pi \] \[ -x < \frac{2\pi - 3\pi}{12} + k\pi \] \[ -x < -\frac{\pi}{12} + k\pi \] Умножаем на -1 (неравенство меняет знак): \[ x > \frac{\pi}{12} - k\pi \] 4. Теперь решим второе неравенство: \[ \frac{\pi}{4} - x > \frac{\pi}{6} + k\pi \] Переносим \( x \) и упрощаем: \[ -x > \frac{\pi}{6} - \frac{\pi}{4} + k\pi \] \[ -x > \frac{2\pi - 3\pi}{12} + k\pi \] \[ -x > -\frac{\pi}{12} + k\pi \] Умножаем на -1: \[ x < \frac{\pi}{12} - k\pi \] 5. Объединим оба неравенства: \[ \frac{\pi}{12} - k\pi < x < \frac{\pi}{12} + k\pi \] 6. Теперь, учитывая периодичность тангенса, получаем: \[ x \in \left(\frac{\pi}{12} + \pi n; \frac{5\pi}{12} + \pi n\right), n \in \mathbb{Z} \] Таким образом, правильный ответ: \[ \left(\frac{\pi}{12}+\pi n ; \frac{5 \pi}{4}+\pi n\right), n \in \mathbb{Z} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Енді, берілген теңсіздікті шешу барысында \( \operatorname{tg} \) функциясының қасиеттерін пайдаланып, \( \frac{\sqrt{3}}{3} \) мәнін ескеру жарысқа қатысушылардың потенциалын өлшеуге мүмкіндік береді. \( \operatorname{tg}\left(\frac{\pi}{4}-x\right) = \frac{\sqrt{3}}{3} \) шешімі x = \frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12} жүретін тұспа-тұс келу керек. Шешімдер белгілі бір интервалда шектеулі, және бұл интервалдар тұрақты түрде π периодында қайталанатындығын ұмытпаңыз. Сондай-ақ, \( \operatorname{tg} \) функциясының әрбір периодында (+π) позициялық ауысулар жасау функцияның графигінің бөлінген элементтерін қарастырып, интервалдарды қалыптастыру қажет.

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy