Question
upstudy study bank question image url

The equation \( y=20 \cdot 3^{t} \) shows the number of infected people from an outbreak of whooping cough. The variable \( y \) represents the number of infected people, and \( t \) represents time in weeks. In how many weeks will the number of infected people reach 1,000 ? a.) 2.45 weeks b.) 2.88 weeks c.) 3.56 weeks d.) 3.24 weeks

Ask by Mejia Hodgson. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The number of infected people will reach 1,000 in approximately 3.56 weeks.

Solution

To solve for t when y = 1,000, start with the equation:   20 · 3^t = 1,000 First, isolate the exponential term:   3^t = 1,000 / 20 = 50 Next, take the natural logarithm of both sides:   ln(3^t) = ln(50) Use the logarithm power rule:   t · ln(3) = ln(50) Now, solve for t:   t = ln(50) / ln(3) Calculating the values:   ln(50) ≈ 3.912   ln(3) ≈ 1.099 Thus:   t ≈ 3.912 / 1.099 ≈ 3.56 The number of weeks required for the number of infected people to reach 1,000 is approximately 3.56 weeks, which corresponds to option c.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find out when the number of infected people will reach 1,000, we will set up the equation: \[ 1000 = 20 \cdot 3^t \] First, divide both sides by 20: \[ 50 = 3^t \] Now, we can solve for \( t \) by taking the logarithm of both sides: \[ t = \log_3(50) \] Using the change of base formula, this can be calculated as: \[ t = \frac{\log_{10}(50)}{\log_{10}(3)} \] Calculating the logarithms: - \( \log_{10}(50) \approx 1.6990 \) - \( \log_{10}(3) \approx 0.4771 \) Now, divide those values: \[ t \approx \frac{1.6990}{0.4771} \approx 3.56 \] Thus, \( t \) is approximately 3.56 weeks. So, the answer is c.) 3.56 weeks.

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy