Question
upstudy study bank question image url

3) \( \begin{array}{l}y \\ =-\frac{1}{2} x-1 \\ y\end{array}=\frac{1}{4} x-4 \)

Ask by Hobbs Evans. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution is \( x = 4 \) and \( y = -3 \).

Solution

We are given the system of equations:   y = –½·x – 1   y = ¼·x – 4 Since both expressions equal y, we set them equal to each other:   –½·x – 1 = ¼·x – 4 To eliminate fractions, multiply every term by 4:   4(–½·x) – 4·1 = 4(¼·x) – 4·4   –2x – 4 = x – 16 Next, isolate x by bringing like terms together. Add 2x to both sides:   –4 = 3x – 16 Then add 16 to both sides:   12 = 3x Divide both sides by 3:   x = 4 Now substitute x = 4 back into one of the original equations (using y = –½·x – 1):   y = –½(4) – 1 = –2 – 1 = –3 Thus, the solution to the system is:   x = 4, y = –3 The lines intersect at the point (4, –3).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the system of equations, we can set the two equations equal to each other since they both equal \( y \): \[ -\frac{1}{2} x - 1 = \frac{1}{4} x - 4 \] Now, let's gather the \( x \) terms on one side and the constant terms on the other. Start by adding \( \frac{1}{2} x \) to both sides, which gives us: \[ -1 = \frac{1}{4} x + \frac{1}{2} x - 4 \] To combine the \( x \) terms, convert \( \frac{1}{2} x \) to fourths: \[ \frac{1}{2} x = \frac{2}{4} x \] Now, substituting back into the equation: \[ -1 = \frac{3}{4} x - 4 \] Next, add 4 to both sides: \[ 3 = \frac{3}{4} x \] To isolate \( x \), multiply both sides by \(\frac{4}{3}\): \[ x = 4 \] Now, substitute \( x = 4 \) back into one of the original equations to find \( y \). Using the first equation: \[ y = -\frac{1}{2}(4) - 1 = -2 - 1 = -3 \] Thus, the solution to the system of equations is: \[ (x, y) = (4, -3) \] So, the point of intersection is \( (4, -3) \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy