Question
upstudy study bank question image url

5. \( \frac{x^{2}-x+2 x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \)

Ask by Schultz Curry. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \( -\frac{x(x + 1)}{(x - 3)^2} \), with the restrictions that \( x \neq -1 \), \( x \neq 1 \), and \( x \neq 3 \).

Solution

We start with the expression   [(x² – x + 2x) / (x² – 2x – 3)] ÷ [(x² – 4x + 3) / (1 – x²)]. Step 1. Simplify the numerator of the first fraction.   x² – x + 2x = x² + x = x(x + 1). Step 2. Factor the denominator of the first fraction.   x² – 2x – 3 factors as (x + 1)(x – 3). So the first fraction becomes   [x(x + 1)] / [(x + 1)(x – 3)]. Cancel the common factor (x + 1) (provided x ≠ –1):   = x / (x – 3). Step 3. Factor the numerator of the second fraction.   x² – 4x + 3 factors as (x – 1)(x – 3). Step 4. Factor the denominator of the second fraction.   1 – x² = –(x² – 1) = –(x – 1)(x + 1). So the second fraction becomes   [(x – 1)(x – 3)] / [– (x – 1)(x + 1)]. Cancel the common factor (x – 1) (provided x ≠ 1):   = (x – 3) / [– (x + 1)] = –(x – 3) / (x + 1). Step 5. Now we have   [x / (x – 3)] ÷ [–(x – 3) / (x + 1)]. Dividing by a fraction is the same as multiplying by its reciprocal:   = [x / (x – 3)] × [– (x + 1) / (x – 3)]   = – x (x + 1) / (x – 3)². Thus, the simplified expression is   – x(x + 1) / (x – 3)². Remember that during these cancellations, you must note the restrictions:  • x ≠ –1 (from canceling x + 1),  • x ≠ 1 (from canceling x – 1),  • x ≠ 3 (since x – 3 appears in a denominator). The final answer is   – x(x + 1) / (x – 3)², with x ≠ –1, 1, 3.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

First, let's simplify the expression step by step. We start with: \[ \frac{x^{2}-x+2x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}} \] This simplifies to: \[ \frac{x^{2}+x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}} \] Performing the division of fractions involves multiplying by the reciprocal: \[ = \frac{x^{2}+x}{x^{2}-2x-3} \times \frac{1-x^{2}}{x^{2}-4x+3} \] Next, we will factor the polynomials in the expression where possible. 1. **Factor \(x^{2}+x\)**: \[ x^{2} + x = x(x + 1) \] 2. **Factor \(x^{2}-2x-3\)**: \[ x^{2}-2x-3 = (x-3)(x+1) \] 3. **Factor \(1 - x^{2}\)**: \[ 1 - x^{2} = (1 - x)(1 + x) \] 4. **Factor \(x^{2}-4x+3\)**: \[ x^{2}-4x+3 = (x-3)(x-1) \] Now substituting the factored forms back in: \[ = \frac{x(x+1)}{(x - 3)(x + 1)} \times \frac{(1 - x)(1 + x)}{(x - 3)(x - 1)} \] We can cancel the \(x + 1\) common term: \[ = \frac{x \cdot (1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \] Now expand the remaining numerator: \[ = \frac{x(1 - x^2)}{(x - 3)^{2}(x - 1)} = \frac{x(1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \] At this point, the expression is simplified as much as possible. Hence, the final result is: \[ \frac{x(1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy