Pregunta
upstudy study bank question image url

5. \( \frac{x^{2}-x+2 x}{x^{2}-2 x-3} \div \frac{x^{2}-4 x+3}{1-x^{2}} \)

Ask by Schultz Curry. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is \( -\frac{x(x + 1)}{(x - 3)^2} \), with the restrictions that \( x \neq -1 \), \( x \neq 1 \), and \( x \neq 3 \).

Solución

We start with the expression   [(x² – x + 2x) / (x² – 2x – 3)] ÷ [(x² – 4x + 3) / (1 – x²)]. Step 1. Simplify the numerator of the first fraction.   x² – x + 2x = x² + x = x(x + 1). Step 2. Factor the denominator of the first fraction.   x² – 2x – 3 factors as (x + 1)(x – 3). So the first fraction becomes   [x(x + 1)] / [(x + 1)(x – 3)]. Cancel the common factor (x + 1) (provided x ≠ –1):   = x / (x – 3). Step 3. Factor the numerator of the second fraction.   x² – 4x + 3 factors as (x – 1)(x – 3). Step 4. Factor the denominator of the second fraction.   1 – x² = –(x² – 1) = –(x – 1)(x + 1). So the second fraction becomes   [(x – 1)(x – 3)] / [– (x – 1)(x + 1)]. Cancel the common factor (x – 1) (provided x ≠ 1):   = (x – 3) / [– (x + 1)] = –(x – 3) / (x + 1). Step 5. Now we have   [x / (x – 3)] ÷ [–(x – 3) / (x + 1)]. Dividing by a fraction is the same as multiplying by its reciprocal:   = [x / (x – 3)] × [– (x + 1) / (x – 3)]   = – x (x + 1) / (x – 3)². Thus, the simplified expression is   – x(x + 1) / (x – 3)². Remember that during these cancellations, you must note the restrictions:  • x ≠ –1 (from canceling x + 1),  • x ≠ 1 (from canceling x – 1),  • x ≠ 3 (since x – 3 appears in a denominator). The final answer is   – x(x + 1) / (x – 3)², with x ≠ –1, 1, 3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's simplify the expression step by step. We start with: \[ \frac{x^{2}-x+2x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}} \] This simplifies to: \[ \frac{x^{2}+x}{x^{2}-2x-3} \div \frac{x^{2}-4x+3}{1-x^{2}} \] Performing the division of fractions involves multiplying by the reciprocal: \[ = \frac{x^{2}+x}{x^{2}-2x-3} \times \frac{1-x^{2}}{x^{2}-4x+3} \] Next, we will factor the polynomials in the expression where possible. 1. **Factor \(x^{2}+x\)**: \[ x^{2} + x = x(x + 1) \] 2. **Factor \(x^{2}-2x-3\)**: \[ x^{2}-2x-3 = (x-3)(x+1) \] 3. **Factor \(1 - x^{2}\)**: \[ 1 - x^{2} = (1 - x)(1 + x) \] 4. **Factor \(x^{2}-4x+3\)**: \[ x^{2}-4x+3 = (x-3)(x-1) \] Now substituting the factored forms back in: \[ = \frac{x(x+1)}{(x - 3)(x + 1)} \times \frac{(1 - x)(1 + x)}{(x - 3)(x - 1)} \] We can cancel the \(x + 1\) common term: \[ = \frac{x \cdot (1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \] Now expand the remaining numerator: \[ = \frac{x(1 - x^2)}{(x - 3)^{2}(x - 1)} = \frac{x(1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \] At this point, the expression is simplified as much as possible. Hence, the final result is: \[ \frac{x(1 - x)(1 + x)}{(x - 3)^{2}(x - 1)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad